Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genes Dev ; 30(8): 931-45, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27056668

RESUMEN

High-resolution imaging shows that persistent DNA damage in budding yeast localizes in distinct perinuclear foci for repair. The signals that trigger DNA double-strand break (DSB) relocation or determine their destination are unknown. We show here that DSB relocation to the nuclear envelope depends on SUMOylation mediated by the E3 ligases Siz2 and Mms21. In G1, a polySUMOylation signal deposited coordinately by Mms21 and Siz2 recruits the SUMO targeted ubiquitin ligase Slx5/Slx8 to persistent breaks. Both Slx5 and Slx8 are necessary for damage relocation to nuclear pores. When targeted to an undamaged locus, however, Slx5 alone can mediate relocation in G1-phase cells, bypassing the requirement for polySUMOylation. In contrast, in S-phase cells, monoSUMOylation mediated by the Rtt107-stabilized SMC5/6-Mms21 E3 complex drives DSBs to the SUN domain protein Mps3 in a manner independent of Slx5. Slx5/Slx8 and binding to pores favor repair by ectopic break-induced replication and imprecise end-joining.


Asunto(s)
Roturas del ADN de Doble Cadena , Poro Nuclear/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sumoilación , Mutación , Membrana Nuclear/metabolismo , Unión Proteica , Fase S/fisiología , Saccharomyces cerevisiae/citología , Ubiquitina-Proteína Ligasas/metabolismo
2.
Mol Cell ; 57(2): 273-89, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25533186

RESUMEN

Mec1-Ddc2 (ATR-ATRIP) controls the DNA damage checkpoint and shows differential cell-cycle regulation in yeast. To find regulators of Mec1-Ddc2, we exploited a mec1 mutant that retains catalytic activity in G2 and recruitment to stalled replication forks, but which is compromised for the intra-S phase checkpoint. Two screens, one for spontaneous survivors and an E-MAP screen for synthetic growth effects, identified loss of PP4 phosphatase, pph3Δ and psy2Δ, as the strongest suppressors of mec1-100 lethality on HU. Restored Rad53 phosphorylation accounts for part, but not all, of the pph3Δ-mediated survival. Phosphoproteomic analysis confirmed that 94% of the mec1-100-compromised targets on HU are PP4 regulated, including a phosphoacceptor site within Mec1 itself, mutation of which confers damage sensitivity. Physical interaction between Pph3 and Mec1, mediated by cofactors Psy2 and Ddc2, is shown biochemically and through FRET in subnuclear repair foci. This establishes a physical and functional Mec1-PP4 unit for regulating the checkpoint response.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Puntos de Control del Ciclo Celular , Quinasa de Punto de Control 2/metabolismo , Replicación del ADN , Epistasis Genética , Regulación Fúngica de la Expresión Génica , Células HEK293 , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/citología , Transducción de Señal
3.
Genes Dev ; 26(4): 369-83, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22345518

RESUMEN

Chromatin in the interphase nucleus moves in a constrained random walk. Despite extensive study, the molecular causes of such movement and its impact on DNA-based reactions are unclear. Using high-precision live fluorescence microscopy in budding yeast, we quantified the movement of tagged chromosomal loci to which transcriptional activators or nucleosome remodeling complexes were targeted. We found that local binding of the transcriptional activator VP16, but not of the Gal4 acidic domain, enhances chromatin mobility. The increase in movement did not correlate strictly with RNA polymerase II (PolII) elongation, but could be phenocopied by targeting the INO80 remodeler to the locus. Enhanced chromatin mobility required Ino80's ATPase activity. Consistently, the INO80-dependent remodeling of nucleosomes upon transcriptional activation of the endogenous PHO5 promoter enhanced chromatin movement locally. Finally, increased mobility at a double-strand break was also shown to depend in part on the INO80 complex. This correlated with increased rates of spontaneous gene conversion. We propose that local chromatin remodeling and nucleosome eviction increase large-scale chromatin movements by enhancing the flexibility of the chromatin fiber.


Asunto(s)
Cromatina/metabolismo , Recombinación Homóloga , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Roturas del ADN de Doble Cadena , Transporte de Proteínas
4.
Mol Cell ; 33(3): 323-34, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19217406

RESUMEN

At yeast telomeres and silent mating-type loci, chromatin assumes a higher-order structure that represses transcription by means of the histone deacetylase Sir2 and structural proteins Sir3 and Sir4. Here, we present a fully reconstituted system to analyze SIR holocomplex binding to nucleosomal arrays. Purified Sir2-3-4 heterotrimers bind chromatin, cooperatively yielding a stable complex of homogeneous molecular weight. Remarkably, Sir2-3-4 also binds naked DNA, reflecting the strong, albeit nonspecific, DNA-binding activity of Sir4. The binding of Sir3 to nucleosomes is sensitive to histone H4 N-terminal tail removal, while that of Sir2-4 is not. Dot1-mediated methylation of histone H3K79 reduces the binding of both Sir3 and Sir2-3-4. Additionally, a byproduct of Sir2-mediated NAD hydrolysis, O-acetyl-ADP-ribose, increases the efficiency with which Sir3 and Sir2-3-4 bind nucleosomes. Thus, in small cumulative steps, each Sir protein, unmodified histone domains, and contacts with DNA contribute to the stability of the silent chromatin complex.


Asunto(s)
Cromatina/metabolismo , Nucleosomas/metabolismo , O-Acetil-ADP-Ribosa/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Histona Desacetilasas/aislamiento & purificación , Histona Desacetilasas/metabolismo , Modelos Biológicos , Modelos Moleculares , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/aislamiento & purificación , Sirtuina 2 , Sirtuinas/aislamiento & purificación , Sirtuinas/metabolismo
5.
PLoS Genet ; 8(5): e1002727, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22654676

RESUMEN

Silent information regulator proteins Sir2, Sir3, and Sir4 form a heterotrimeric complex that represses transcription at subtelomeric regions and homothallic mating type (HM) loci in budding yeast. We have performed a detailed biochemical and genetic analysis of the largest Sir protein, Sir4. The N-terminal half of Sir4 is dispensable for SIR-mediated repression of HM loci in vivo, except in strains that lack Yku70 or have weak silencer elements. For HM silencing in these cells, the C-terminal domain (Sir4C, residues 747-1,358) must be complemented with an N-terminal domain (Sir4N; residues 1-270), expressed either independently or as a fusion with Sir4C. Nonetheless, recombinant Sir4C can form a complex with Sir2 and Sir3 in vitro, is catalytically active, and has sedimentation properties similar to a full-length Sir4-containing SIR complex. Sir4C-containing SIR complexes bind nucleosomal arrays and protect linker DNA from nucleolytic digestion, but less effectively than wild-type SIR complexes. Consistently, full-length Sir4 is required for the complete repression of subtelomeric genes. Supporting the notion that the Sir4 N-terminus is a regulatory domain, we find it extensively phosphorylated on cyclin-dependent kinase consensus sites, some being hyperphosphorylated during mitosis. Mutation of two major phosphoacceptor sites (S63 and S84) derepresses natural subtelomeric genes when combined with a serendipitous mutation (P2A), which alone can enhance the stability of either the repressed or active state. The triple mutation confers resistance to rapamycin-induced stress and a loss of subtelomeric repression. We conclude that the Sir4 N-terminus plays two roles in SIR-mediated silencing: it contributes to epigenetic repression by stabilizing the SIR-mediated protection of linker DNA; and, as a target of phosphorylation, it can destabilize silencing in a regulated manner.


Asunto(s)
Genes del Tipo Sexual de los Hongos , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Telómero/genética , Transcripción Genética , Cromatina/genética , Quinasas Ciclina-Dependientes , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Genes del Tipo Sexual de los Hongos/genética , Mitosis , Fosforilación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Activación Transcripcional
6.
Life Sci Alliance ; 4(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34226278

RESUMEN

DNA polymerase δ, which contains the catalytic subunit, Pol3, Pol31, and Pol32, contributes both to DNA replication and repair. The deletion of pol31 is lethal, and compromising the Pol3-Pol31 interaction domains confers hypersensitivity to cold, hydroxyurea (HU), and methyl methanesulfonate, phenocopying pol32Δ. We have identified alanine-substitutions in pol31 that suppress these deficiencies in pol32Δ cells. We characterize two mutants, pol31-T415A and pol31-W417A, which map to a solvent-exposed loop that mediates Pol31-Pol3 and Pol31-Rev3 interactions. The pol31-T415A substitution compromises binding to the Pol3 CysB domain, whereas Pol31-W417A improves it. Importantly, loss of Pol32, such as pol31-T415A, leads to reduced Pol3 and Pol31 protein levels, which are restored by pol31-W417A. The mutations have differential effects on recovery from acute HU, break-induced replication and trans-lesion synthesis repair pathways. Unlike trans-lesion synthesis and growth on HU, the loss of break-induced replication in pol32Δ cells is not restored by pol31-W417A, highlighting pathway-specific roles for Pol32 in fork-related repair. Intriguingly, CHIP analyses of replication forks on HU showed that pol32Δ and pol31-T415A indirectly destabilize DNA pol α and pol ε at stalled forks.


Asunto(s)
ADN Polimerasa III/química , ADN Polimerasa III/metabolismo , Reparación del ADN , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Subunidades de Proteína , Sitios de Unión , Replicación del ADN , Complejos Multiproteicos , Unión Proteica , Levaduras/genética , Levaduras/metabolismo
7.
Nucleic Acids Res ; 31(19): 5714-22, 2003 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-14500835

RESUMEN

Epipodophyllotoxins are effective antitumour drugs that trap eukaryotic DNA topoisomerase II in a covalent complex with DNA. Based on DNA cleavage assays, the mode of interaction of these drugs was proposed to involve amino acid residues of the catalytic site. An in vitro binding study, however, revealed two potential binding sites for etoposide within human DNA topoisomerase IIalpha (htopoIIalpha), one in the catalytic core of the enzyme and one in the ATP-binding N-terminal domain. Here we have tested how N-terminal mutations that reduce the affinity of the site for etoposide or ATP affect the sensitivity of yeast cells to etoposide. Surprisingly, when introduced into full-length enzymes, mutations that lower the drug binding capacity of the N-terminal domain in vitro render yeast more sensitive to epipodophyllotoxins. Consistently, when the htopoIIalpha N-terminal domain alone is overexpressed in the presence of yeast topoII, cells become more resistant to etoposide. Point mutations that weaken etoposide binding eliminate this resistance phenotype. We argue that the N-terminal ATP-binding pocket competes with the active site of the holoenzyme for binding etoposide both in cis and in trans with different outcomes, suggesting that each topoisomerase II monomer has two non-equivalent drug-binding sites.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Resistencia a Medicamentos , Etopósido/farmacología , Inhibidores de Topoisomerasa II , Adenosina Trifosfato/metabolismo , Antígenos de Neoplasias , Antineoplásicos Fitogénicos/metabolismo , Sitios de Unión , División Celular/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN , Etopósido/metabolismo , Humanos , Mutación , Estructura Terciaria de Proteína , Levaduras/efectos de los fármacos , Levaduras/crecimiento & desarrollo
8.
Genetics ; 185(3): 841-54, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20407133

RESUMEN

Spo13 is a key meiosis-specific regulator required for centromere cohesion and coorientation, and for progression through two nuclear divisions. We previously reported that it causes a G2/M arrest and may delay the transition from late anaphase to G1, when overexpressed in mitosis. Yet its mechanism of action has remained elusive. Here we show that Spo13, which is phosphorylated and stabilized at G2/M in a Cdk/Clb-dependent manner, acts at two stages during mitotic cell division. Spo13 provokes a G2/M arrest that is reversible and largely independent of the Mad2 spindle checkpoint. Since mRNAs whose induction requires Cdc14 activation are reduced, we propose that its anaphase delay results from inhibition of Cdc14 function. Indeed, the Spo13-induced anaphase delay correlates with Cdc14 phosphatase retention in the nucleolus and with cyclin B accumulation, which both impede anaphase exit. At the onset of arrest, Spo13 is primarily associated with the nucleolus, where Cdc14 accumulates. Significantly, overexpression of separase (Esp1), which promotes G2/M and anaphase progression, suppresses Spo13 effects in mitosis, arguing that Spo13 acts upstream or parallel to Esp1. Given that Spo13 overexpression reduces Pds1 and cyclin B degradation, our findings are consistent with a role for Spo13 in regulating APC, which controls both G2/M and anaphase. Similar effects of Spo13 during meiotic MI may prevent cell cycle exit and initiation of DNA replication prior to MII, thereby ensuring two successive chromosome segregation events without an intervening S phase.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Nucléolo Celular/metabolismo , Mitosis/fisiología , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Biomarcadores/metabolismo , Western Blotting , Proteínas de Ciclo Celular/genética , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Saccharomyces cerevisiae/genética
9.
Science ; 322(5901): 597-602, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18948542

RESUMEN

Recent findings suggest important roles for nuclear organization in gene expression. In contrast, little is known about how nuclear organization contributes to genome stability. Epistasis analysis (E-MAP) using DNA repair factors in yeast indicated a functional relationship between a nuclear pore subcomplex and Slx5/Slx8, a small ubiquitin-like modifier (SUMO)-dependent ubiquitin ligase, which we show physically interact. Real-time imaging and chromatin immunoprecipitation confirmed stable recruitment of damaged DNA to nuclear pores. Relocation required the Nup84 complex and Mec1/Tel1 kinases. Spontaneous gene conversion can be enhanced in a Slx8- and Nup84-dependent manner by tethering donor sites at the nuclear periphery. This suggests that strand breaks are shunted to nuclear pores for a repair pathway controlled by a conserved SUMO-dependent E3 ligase.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Inmunoprecipitación de Cromatina , Reparación del ADN , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Conversión Génica , Genes Fúngicos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinética , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Dedos de Zinc
10.
Proc Natl Acad Sci U S A ; 99(25): 16087-92, 2002 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-12441400

RESUMEN

The Dbf4Cdc7 kinase acts at the level of individual origins to promote the initiation of DNA replication. We demonstrate through both immunoprecipitation and two-hybrid assays that a domain comprising the first 296 aa of Dbf4p interacts with Orc2p and Orc3p subunits of the origin recognition complex (ORC). Given that the activation of Rad53 kinase in response to the DNA replication checkpoint leads to the release of Dbf4p from an ORC-containing chromatin fraction, we also examined interaction between Dbf4p and Rad53p. This same domain of Dbf4p binds specifically to the forkhead homology-associated (FHA) domains of Rad53p. Cell cycle arrest in G(2)M, provoked by the overexpression of the Dbf4 domain, is suppressed in a rad53 mutant. Moreover, its overexpression perturbs the regulation of late, but not early, origin firing in wild-type cells after treatment with hydroxyurea.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Sitios de Unión , Quinasa de Punto de Control 2 , Replicación del ADN/efectos de los fármacos , ADN de Hongos/biosíntesis , Proteínas de Unión al ADN/química , Regulación Fúngica de la Expresión Génica , Hidroxiurea/farmacología , Sustancias Macromoleculares , Modelos Genéticos , Complejo de Reconocimiento del Origen , Pruebas de Precipitina , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Subunidades de Proteína , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA