RESUMEN
Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma (LUAD) patients often respond to EGFR tyrosine kinase inhibitors (TKIs) initially but eventually develop resistance to TKIs. The switch of EGFR downstream signaling from TKI-sensitive to TKI-insensitive is a critical mechanism-driving resistance to TKIs. Identification of potential therapies to target EGFR effectively is a potential strategy to treat TKI-resistant LUADs. In this study, we developed a small molecule diarylheptanoid 35d, a curcumin derivative, that effectively suppressed EGFR protein expression, killed multiple TKI-resistant LUAD cells in vitro, and suppressed tumor growth of EGFR-mutant LUAD xenografts with variant TKI-resistant mechanisms including EGFR C797S mutations in vivo. Mechanically, 35d triggers heat shock protein 70-mediated lysosomal pathway through transcriptional activation of several components in the pathway, such as HSPA1B, to induce EGFR protein degradation. Interestingly, higher HSPA1B expression in LUAD tumors associated with longer survival of EGFR-mutant, TKI-treated patients, suggesting the role of HSPA1B on retarding TKI resistance and providing a rationale for combining 35d with EGFR TKIs. Our data showed that combination of 35d significantly inhibits tumor reprogression on osimertinib and prolongs mice survival. Overall, our results suggest 35d as a promising lead compound to suppress EGFR expression and provide important insights into the development of combination therapies for TKI-resistant LUADs, which could have translational potential for the treatment of this deadly disease.
Asunto(s)
Adenocarcinoma del Pulmón , Diarilheptanoides , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Línea Celular Tumoral , Diarilheptanoides/farmacología , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Lisosomas/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacologíaRESUMEN
This research aims to investigate the non-specific immune response of Taiwan abalone (Haliotis diversicolor supertexta) which was treated with the beta-1,3-1,6-glucan to be observed in the survival impact after the Vibrio alginolyticus infection. The non-specific immune and physiological response of superoxide anion radical (O2(-)), phenoloxidase (PO), phagocytic index (PI), phagocytic rate (PR) and lucigenin-chemiluminescence for reactive oxygen intermediates (ROIs) were enhanced via in-vitro experiment. In the in-vivo experiment, the observed data presented that the haemolymph lysate supernatant (HLS), superoxide dismutase (SOD), glutamate oxalacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) were not significant enhanced, but the total haemocyte count (THC), O2(-), PO, phagocytic index (PI), phagocytic ratio (PR) and other parameters of immune were significantly promoted after treated with beta-1,3-1,6-glucan. In the challenge experiment, the survival rates of abalone in the 40 and 80 µl/ml groups of beta-1,3-1,6-glucan were observed from 6.67% up to 33.33% and 36.67% after injection with Vibrio alginolyticus, respectively.
Asunto(s)
Gastrópodos/efectos de los fármacos , Gastrópodos/microbiología , Glucanos/farmacología , Inmunomodulación/efectos de los fármacos , Vibrio alginolyticus/fisiología , Animales , Relación Dosis-Respuesta a Droga , Gastrópodos/inmunología , Gastrópodos/metabolismo , Factores Inmunológicos/farmacología , Análisis de SupervivenciaRESUMEN
Protein kinase C delta (PKCδ) is prominently expressed in the nuclei of EGFR-mutant lung cancer cells, and its presence correlates with poor survival of the patients undergoing EGFR inhibitor treatment. The inhibition of PKCδ has emerged as a viable approach to overcoming resistance to EGFR inhibitors. However, clinical-grade PKCδ inhibitors are not available, highlighting the urgent needs for the development of effective drugs that target PKCδ. In this study, we designed and synthesized a series of inhibitors based on the chemical structure of a pan PKC inhibitor sotrastaurin. This was achieved by incorporating a triazole ring group into the original sotrastaurin configuration. Our findings revealed that the sotrastaurin derivative CMU-0101 exhibited an elevated affinity for binding to the ATP-binding site of PKCδ and effectively suppressed nuclear PKCδ in resistant cells in comparison to sotrastaurin. Furthermore, we demonstrated that CMU-0101 synergistically enhanced EGFR TKI gefitinib sensitivity in resistant cells. Altogether, our study provides a promising strategy for designing and synthesizing PKCδ inhibitors with improved efficacy, and suggests CMU-0101 as a potential lead compound to inhibit PKCδ and overcome TKI resistance in lung cancers.
RESUMEN
Materials that have higher fluorescence emission in the solid state than molecules in solution have recently been paid more attention by the scientific community due to their potential applications in various fields. In this work, we newly synthesized benzoxazolyl-imidazole and benzothiazolyl-imidazole conjugates, which show aggregation-induced emission (AIE) features in their solid and aggregate states. It was found that oxygen and sulfur substitutions can dramatically influence the molecular structures and polarities of the dyes, leading to different degrees of the AIE phenomenon. The benzothiazolyl-imidazole molecule has lower polarity compared to that of benzoxazolyl-imidazole; therefore, the dye bearing a benzothiazolyl group shows higher emission intensity and dual emission in aqueous solution. Theoretical calculation results suggest that the benzothiazolyl-imidazole molecules might have electrostatic interactions between sulfur and nitrogen atoms, explaining the experimental observations of lower critical aggregation concentration and photophysical properties both in solution and in the solid state. The theoretical calculations agree with the experimental data, thus demonstrating a potent strategy to gain a deep understanding of the structure-property relationships to design solid-state fluorescent materials.