Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Circ Res ; 106(1): 93-101, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19910580

RESUMEN

RATIONALE: Post-myocardial infarction ventricular remodeling is associated with the expression of a variety of factors including S100B that can potentially modulate myocyte apoptosis. OBJECTIVE: This study was undertaken to investigate the expression and function of S100B and its receptor, the receptor for advanced glycation end products (RAGE) in both postinfarction myocardium and in a rat neonatal myocyte culture model. METHODS AND RESULTS: In a rat model of myocardial infarction following coronary artery ligation, we demonstrate in periinfarct myocytes, upregulation of RAGE, induction of S100B, and release into plasma with consequent myocyte apoptosis. Using a coimmunoprecipitation strategy, we demonstrate a direct interaction between S100B and RAGE. In rat neonatal cardiac myocyte cultures, S100B at concentrations > or = 50 nmol/L induced myocyte apoptosis, as evidenced by increased terminal DNA fragmentation, TUNEL, cytochrome c release from mitochondria to cytoplasm, phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and p53, increased expression and activity of proapoptotic caspase-3, and decreased expression of antiapoptotic Bcl-2. Transfection of a full-length cDNA of RAGE or a dominant-negative mutant of RAGE resulted in increased or attenuated S100B-induced myocyte apoptosis, respectively. Inhibition of ERK1/2 by U0126/PD-98059 or overexpression of a dominant negative p53 comparably inhibited S100B-induced myocyte apoptosis. CONCLUSIONS: These results suggest that interaction of RAGE and its ligand S100B after myocardial infarction may play a role in myocyte apoptosis by activating ERK1/2 and p53 signaling. This receptor-mediated mechanism is uniquely amenable to therapeutic intervention.


Asunto(s)
Apoptosis , Proteínas Musculares/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Receptores Inmunológicos/metabolismo , Proteínas S100/metabolismo , Animales , Butadienos/farmacología , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular , Citocromos c/genética , Citocromos c/metabolismo , Citosol/metabolismo , Fragmentación del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/genética , Infarto del Miocardio/genética , Factores de Crecimiento Nervioso/genética , Nitrilos/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Ratas , Ratas Sprague-Dawley , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/genética , Subunidad beta de la Proteína de Unión al Calcio S100 , Proteínas S100/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Remodelación Ventricular/efectos de los fármacos , Remodelación Ventricular/genética
2.
J Clin Invest ; 102(8): 1609-16, 1998 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-9788975

RESUMEN

We have recently reported that the Ca2+-binding protein S100beta was induced in rat heart after infarction and forced expression of S100beta in neonatal rat cardiac myocyte cultures inhibited alpha1-adrenergic induction of beta myosin heavy chain (MHC) and skeletal alpha-actin (skACT). We now extend this work by showing that S100beta is induced in hearts of human subjects after myocardial infarction. Furthermore, to determine whether overexpression of S100beta was sufficient to inhibit in vivo hypertrophy, transgenic mice containing multiple copies of the human gene under the control of its own promoter, and CD1 control mice were treated with norepinephrine (NE) (1.5 mg/kg) or vehicle, intraperitoneally twice daily for 15 d. In CD1, NE produced an increase in left ventricular/body weight ratio, ventricular wall thickness, induction of skACT, atrial natriuretic factor, betaMHC, and downregulation of alphaMHC. In transgenic mice, NE induced S100beta transgene mRNA and protein, but provoked neither hypertrophy nor regulated cardiac-specific gene expression. NE induced hypertrophy in cultured CD1 but not S100beta transgenic myocytes, confirming that the effects of S100beta on cardiac mass reflected myocyte-specific responses. These transgenic studies complement in vitro data and support the hypothesis that S100beta acts as an intrinsic negative regulator of the myocardial hypertrophic response.


Asunto(s)
Proteínas de Unión al Calcio/biosíntesis , Cardiomegalia/metabolismo , Infarto del Miocardio/metabolismo , Factores de Crecimiento Nervioso/biosíntesis , Norepinefrina/farmacología , Proteínas S100 , Actinas/biosíntesis , Animales , Factor Natriurético Atrial/biosíntesis , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/aislamiento & purificación , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Células Cultivadas , Ecocardiografía , Regulación de la Expresión Génica , Ventrículos Cardíacos/patología , Humanos , Ratones , Ratones Transgénicos , Miocardio/citología , Cadenas Pesadas de Miosina/biosíntesis , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/aislamiento & purificación , Receptores Adrenérgicos alfa 1/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100 , Distribución Tisular
3.
Cardiovasc Res ; 37(2): 312-23, 1998 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9614488

RESUMEN

Action potential prolongation is a common finding in human heart failure and in animal models of cardiac hypertrophy. The mechanism of action potential prolongation involves altered expression of a variety of depolarising and hyperpolarising currents in the myocardium. In particular, decreased density of the transient outward potassium current seems to play a prominent role, regardless of species, precipitating factors or the severity of hypertrophy. The decreased density of the transient outward current appears to be caused by reduced transcription of Kv4.2 and Kv4.3 and may be caused in part by an inhibitory effect of alpha-adrenoceptor stimulation. During the early stage of the disease process, action potential prolongation may increase the amplitude of the intracellular calcium transient, causing positive inotropy. We argue therefore, that action prolongation may be a compensatory response which may acutely support the compromised cardiac output. In severe hypertrophy and end-stage heart failure however, despite continued action potential prolongation, the amplitude of the calcium transient becomes severely reduced. The mechanism underlying this event appears to involve reduced expression of calcium handling proteins, and these late events may herald the onset of failure. At present the events leading to the late changes in calcium handling are poorly understood. However, chronic activation of compensatory mechanisms including action potential prolongation may trigger these late events. In the present article we outline a hypothesis which describes a potential role for action potential prolongation, and the associated elevation in the levels of intracellular calcium, in maladaptive gene expression and the progression toward cardiac failure.


Asunto(s)
Potenciales de Acción , Calcio/metabolismo , Insuficiencia Cardíaca/etiología , Miocardio/metabolismo , Animales , Canales de Calcio/metabolismo , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Humanos , Modelos Cardiovasculares , Canales de Potasio Shal
4.
Exp Cell Res ; 303(2): 471-81, 2005 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15652358

RESUMEN

S100A6 (calcyclin), a member of the S100 family of EF-hand Ca2+ binding proteins, has been implicated in the regulation of cell growth and proliferation. We have previously shown that S100B, another member of the S100 family, is induced postinfarction and limits the hypertrophic response of surviving cardiac myocytes. We presently report that S100A6 expression is also increased in the periinfarct zone of rat heart postinfarction and in cultured neonatal rat myocytes by treatment with several trophic agents, including platelet-derived growth factor (PDGF), the alpha1-adrenergic agonist phenylephrine (PE), and angiotensin II (AII). Cotransfection of S100A6 in cultured neonatal rat cardiac myocytes inhibits induction of the cardiac fetal gene promoters skeletal alpha-actin (skACT) and beta-myosin heavy chain (beta-MHC) by PDGF, PE, AII, and the prostaglandin F2alpha (PGF2alpha), induction of the S100B promoter by PE, and induction of the alpha-MHC promoter by triiodothyronine (T3). By contrast, S100B cotransfection selectively inhibited only PE induction of skACT and beta-MHC promoters. Fluorescence microscopy demonstrated overlapping intracellular distribution of S100B and S100A6 in transfected myocytes and in postinfarct myocardium but heterodimerization of the two proteins could not be detected by co-immunoprecipitation. We conclude that S100A6 may function as a global negative modulator of differentiated cardiac gene expression comparable to its putative role in cell cycle progression of dividing cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas S100/metabolismo , Actinas/genética , Animales , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Células Cultivadas , ADN/genética , Regulación de la Expresión Génica/efectos de los fármacos , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Factores de Crecimiento Nervioso , Fenilefrina/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína A6 de Unión a Calcio de la Familia S100 , Subunidad beta de la Proteína de Unión al Calcio S100 , Proteínas S100/genética , Transfección , Miosinas Ventriculares/genética
5.
Can J Physiol Pharmacol ; 62(10): 1261-7, 1984 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-6439400

RESUMEN

Coronary flow was recorded from spontaneously beating isolated perfused hearts of rats and guinea pigs. Arachidonic acid (AA), in single bolus doses, produced a fast short lasting coronary constriction followed by a slow developing but persisting vasodilation. These reactions (biphasic type) were characteristic of the guinea pig heart. In about 50% of the rat hearts the vasoconstrictor action predominated while the biphasic response was obtained in the rest of the experiments. Pretreatment of rats with aspirin prevented the responses to AA in the isolated heart. The administration of reduced glutathione (GSH) (about 1 mM to the rat or 0.5-0.75 mM to the guinea pig hearts) produced a marked development and (or) enhancement of the vasodilator action of AA. Repeated or single large doses of AA produced a change of pattern of responses from biphasic to constrictor type; the addition of GSH restored the vasodilator phase. Since GSH directs the endoperoxide metabolism towards the synthesis of prostaglandin E2 (PGE2), we postulate that the coronary dilatation of resistance vessels produced by AA would be due to a great extent to PGE2.


Asunto(s)
Ácidos Araquidónicos/antagonistas & inhibidores , Vasos Coronarios/efectos de los fármacos , Glutatión/farmacología , Vasoconstricción/efectos de los fármacos , Animales , Ácido Araquidónico , Ácidos Araquidónicos/farmacología , Aspirina/farmacología , Circulación Coronaria/efectos de los fármacos , Vasos Coronarios/fisiología , Cobayas , Corazón/efectos de los fármacos , Técnicas In Vitro , Masculino , Ratas , Ratas Endogámicas
6.
Can J Appl Physiol ; 23(4): 377-89, 1998 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9677434

RESUMEN

Cardiac hypertrophy induced by pressure overload and following myocardial infarction entails regulation of myocardial gene expression, recapitulating an embryonic phenotype, including activation of fetal beta-myosin heavy chain and skeletal alpha-actin. Progressive hypertrophy and alterations in gene expression may contribute to myocardial failure. Although signaling pathways that contribute to hypertrophy development have been identified, intrinsic cardiac regulators that limit hypertrophic response have not been determined. The beta subunit of S100 protein is induced in the myocardium of human subjects and an experimental rat model following myocardial infarction. Forced S100 beta expression in neonatal rat cardiac myocyte cultures and high level expression of S100 beta in transgenic mice hearts inhibit cardiac hypertrophy and the associated phenotype by modulating protein kinase C-dependent pathways. S100 beta expression is probably a component of the myocyte response to trophic stimulation that serves as a negative feedback mechanism to limit cellular growth and the associated alterations in gene expression.


Asunto(s)
Cardiomegalia/prevención & control , Miocardio/metabolismo , Proteínas S100/biosíntesis , Actinas/genética , Animales , Gasto Cardíaco Bajo/etiología , Cardiomegalia/etiología , División Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Retroalimentación , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Infarto del Miocardio/complicaciones , Miocardio/citología , Cadenas Pesadas de Miosina/genética , Miosina Tipo IIB no Muscular , Fenotipo , Proteína Quinasa C/genética , Ratas , Proteínas S100/genética , Transducción de Señal/fisiología
7.
J Biol Chem ; 272(50): 31915-21, 1997 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-9395540

RESUMEN

In an experimental rat model of myocardial infarction, surviving cardiac myocytes undergo hypertrophy in response to trophic effectors. This response involves gene reprogramming manifested by the re-expression of fetal genes, such as the previously reported isoform switch from adult alpha- to embryonic beta-myosin heavy chain. We now report the transient re-expression of a second fetal gene, skeletal alpha-actin in rat myocardium at 7 days post-infarction, and its subsequent down-regulation coincident with the delayed induction of S100beta, a protein normally expressed in brain. In cultured neonatal rat cardiac myocytes, co-transfection with an S100beta-expression vector inhibits a pathway associated with hypertrophy, namely, alpha1-adrenergic induction of beta-myosin heavy chain and skeletal alpha-actin promoters mediated by beta-protein kinase C. The induction of beta-myosin heavy chain by hypoxia was similarly blocked by forced expression of S100beta. Our results suggest that S100beta may be an intrinsic negative regulator of the hypertrophic response of surviving cardiac myocytes post-infarction. Such negative regulators may be important in limiting the adverse consequences of unchecked hypertrophy leading to ventricular remodeling and dysfunction.


Asunto(s)
Autoantígenos/farmacología , Proteínas de Unión al Calcio/farmacología , Cardiomegalia/patología , Miocardio/patología , Factores de Crecimiento Nervioso/farmacología , Receptores Adrenérgicos alfa 1/metabolismo , Proteínas S100 , Agonistas alfa-Adrenérgicos/farmacología , Animales , Modelos Animales de Enfermedad , Corazón/efectos de los fármacos , Infarto del Miocardio/patología , Fenotipo , Proteína Quinasa C/metabolismo , Ratas , Subunidad beta de la Proteína de Unión al Calcio S100 , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA