Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pharmacol Sci ; 154(4): 312-315, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485349

RESUMEN

We previously identified a spinal astrocyte population that expresses hairy and enhancer of split 5 (Hes5) and is selectively present in superficial laminae in mice. However, it was unclear whether such astrocyte heterogeneity is commonly observed across species. Using adeno-associated viral (AAV) vectors incorporating a rat Hes5 promotor (AAV-Hes5P), we found that AAV-Hes5P-captured astrocytes were selectively located in the superficial laminae in rats. Furthermore, activation of AAV-Hes5P+ astrocytes elicited allodynia-like behavior and increased c-FOS+ cells in the superficial laminae. Thus, laminar-selective Hes5+ astrocytes are conserved beyond species and have the capability to convert tactile information to nociceptive.


Asunto(s)
Astrocitos , Médula Espinal , Ratas , Ratones , Animales , Nocicepción , Proteínas Proto-Oncogénicas c-fos/genética , Hiperalgesia
2.
Mol Brain ; 17(1): 25, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773624

RESUMEN

A growing body of evidence indicates intra- and inter-regional heterogeneity of astrocytes in the brain. However, because of a lack of an efficient method for isolating astrocytes from the spinal cord, little is known about how much spinal cord astrocytes are heterogeneous in adult mice. In this study, we developed a new method for isolating spinal astrocytes from adult mice using a cold-active protease from Bacillus licheniformis with an astrocyte cell surface antigen-2 (ACSA-2) antibody. Using fluorescence-activated cell sorting, isolated spinal ACSA-2+ cells were divided into two distinct populations, ACSA-2high and ACSA-2low. By analyzing the expression of cell-type marker genes, the ACSA-2high and ACSA-2low populations were identified as astrocytes and ependymal cells, respectively. Furthermore, ACSA-2high cells had mRNAs encoding genes that were abundantly expressed in the gray matter (GM) but not white matter astrocytes. By optimizing enzymatic isolation procedures, the yield of GM astrocytes also increased. Therefore, our newly established method enabled the selective and efficient isolation of GM astrocytes from the spinal cord of adult mice and may be useful for bulk- or single-cell RNA-sequencing under physiological and pathological conditions.


Asunto(s)
Astrocitos , Separación Celular , Sustancia Gris , Médula Espinal , Animales , Astrocitos/metabolismo , Astrocitos/citología , Médula Espinal/citología , Separación Celular/métodos , Ratones Endogámicos C57BL , Ratones , Masculino , ARN Mensajero/metabolismo , ARN Mensajero/genética , Envejecimiento
3.
Mol Brain ; 17(1): 24, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762724

RESUMEN

CD11c-positive (CD11c+) microglia have attracted considerable attention because of their potential implications in central nervous system (CNS) development, homeostasis, and disease. However, the spatiotemporal dynamics of the proportion of CD11c+ microglia in individual CNS regions are poorly understood. Here, we investigated the proportion of CD11c+ microglia in six CNS regions (forebrain, olfactory bulb, diencephalon/midbrain, cerebellum, pons/medulla, and spinal cord) from the developmental to adult stages by flow cytometry and immunohistochemical analyses using a CD11c reporter transgenic mouse line, Itgax-Venus. We found that the proportion of CD11c+ microglia in total microglia varied between CNS regions during postnatal development. Specifically, the proportion was high in the olfactory bulb and cerebellum at postnatal day P(4) and P7, respectively, and approximately half of the total microglia were CD11c+. The proportion declined sharply in all regions to P14, and the low percentage persisted over P56. In the spinal cord, the proportion of CD11c+ microglia was also high at P4 and declined to P14, but increased again at P21 and thereafter. Interestingly, the distribution pattern of CD11c+ microglia in the spinal cord markedly changed from gray matter at P4 to white matter at P21. Collectively, our findings reveal the differences in the spatiotemporal dynamics of the proportion of CD11c+ microglia among CNS regions from early development to adult stages in normal mice. These findings improve our understanding of the nature of microglial heterogeneity and its dynamics in the CNS.


Asunto(s)
Encéfalo , Ratones Transgénicos , Microglía , Médula Espinal , Animales , Microglía/metabolismo , Microglía/citología , Médula Espinal/crecimiento & desarrollo , Encéfalo/crecimiento & desarrollo , Encéfalo/citología , Análisis Espacio-Temporal , Envejecimiento , Antígeno CD11c/metabolismo , Ratones Endogámicos C57BL , Ratones , Animales Recién Nacidos
4.
Commun Biol ; 7(1): 330, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491200

RESUMEN

The anterior cingulate cortex (ACC) responds to noxious and innocuous sensory inputs, and integrates them to coordinate appropriate behavioral reactions. However, the role of the projections of ACC neurons to subcortical areas and their influence on sensory processing are not fully investigated. Here, we identified that ACC neurons projecting to the contralateral claustrum (ACC→contraCLA) preferentially respond to contralateral mechanical sensory stimulation. These sensory responses were enhanced during attending behavior. Optogenetic activation of ACC→contraCLA neurons silenced pyramidal neurons in the contralateral ACC by recruiting local circuit fast-spiking interneuron activation via an excitatory relay in the CLA. This circuit activation suppressed withdrawal behavior to mechanical stimuli ipsilateral to the ACC→contraCLA neurons. Chemogenetic silencing showed that the cross-hemispheric circuit has an important role in the suppression of contralateral nociceptive behavior during sensory-driven attending behavior. Our findings identify a cross-hemispheric cortical-subcortical-cortical arc allowing the brain to give attentional priority to competing innocuous and noxious inputs.


Asunto(s)
Claustro , Giro del Cíngulo , Giro del Cíngulo/fisiología , Neuronas/fisiología , Células Piramidales , Encéfalo
5.
Commun Biol ; 7(1): 896, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39043941

RESUMEN

The central nervous system (CNS) includes anatomically distinct macrophage populations including parenchyma microglia and CNS-associated macrophages (CAMs) localized at the interfaces like meninges and perivascular space, which play specialized roles for the maintenance of the CNS homeostasis with the help of precisely controlled gene expressions. However, the transcriptional machinery that determines their cell-type specific states of microglia and CAMs remains poorly understood. Here we show, by myeloid cell-specific deletion of transcription factors, IRF8 and MAFB, that both adult microglia and CAMs utilize IRF8 to maintain their core gene signatures, although the genes altered by IRF8 deletion are different in the two macrophage populations. By contrast, MAFB deficiency robustly affected the gene expression profile of adult microglia, whereas CAMs are almost independent of MAFB. Our data suggest that distinct transcriptional machineries regulate different macrophages in the CNS.


Asunto(s)
Sistema Nervioso Central , Factores Reguladores del Interferón , Macrófagos , Factor de Transcripción MafB , Factor de Transcripción MafB/genética , Factor de Transcripción MafB/metabolismo , Animales , Macrófagos/metabolismo , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Ratones , Sistema Nervioso Central/metabolismo , Microglía/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Transcripción Genética , Regulación de la Expresión Génica
6.
Nat Commun ; 15(1): 6525, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117630

RESUMEN

Reactive astrocytes play a pivotal role in the pathogenesis of neurological diseases; however, their functional phenotype and the downstream molecules by which they modify disease pathogenesis remain unclear. Here, we genetically increase P2Y1 receptor (P2Y1R) expression, which is upregulated in reactive astrocytes in several neurological diseases, in astrocytes of male mice to explore its function and the downstream molecule. This astrocyte-specific P2Y1R overexpression causes neuronal hyperexcitability by increasing both astrocytic and neuronal Ca2+ signals. We identify insulin-like growth factor-binding protein 2 (IGFBP2) as a downstream molecule of P2Y1R in astrocytes; IGFBP2 acts as an excitatory signal to cause neuronal excitation. In neurological disease models of epilepsy and stroke, reactive astrocytes upregulate P2Y1R and increase IGFBP2. The present findings identify a mechanism underlying astrocyte-driven neuronal hyperexcitability, which is likely to be shared by several neurological disorders, providing insights that might be relevant for intervention in diverse neurological disorders.


Asunto(s)
Astrocitos , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina , Neuronas , Receptores Purinérgicos P2Y1 , Regulación hacia Arriba , Animales , Astrocitos/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Neuronas/metabolismo , Masculino , Ratones , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y1/genética , Ratones Transgénicos , Epilepsia/metabolismo , Epilepsia/genética , Epilepsia/fisiopatología , Ratones Endogámicos C57BL , Humanos , Señalización del Calcio , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA