Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 187(15): 4043-4060.e30, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38878778

RESUMEN

Inflammation-induced neurodegeneration is a defining feature of multiple sclerosis (MS), yet the underlying mechanisms remain unclear. By dissecting the neuronal inflammatory stress response, we discovered that neurons in MS and its mouse model induce the stimulator of interferon genes (STING). However, activation of neuronal STING requires its detachment from the stromal interaction molecule 1 (STIM1), a process triggered by glutamate excitotoxicity. This detachment initiates non-canonical STING signaling, which leads to autophagic degradation of glutathione peroxidase 4 (GPX4), essential for neuronal redox homeostasis and thereby inducing ferroptosis. Both genetic and pharmacological interventions that target STING in neurons protect against inflammation-induced neurodegeneration. Our findings position STING as a central regulator of the detrimental neuronal inflammatory stress response, integrating inflammation with glutamate signaling to cause neuronal cell death, and present it as a tractable target for treating neurodegeneration in MS.


Asunto(s)
Inflamación , Proteínas de la Membrana , Esclerosis Múltiple , Neuronas , Animales , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Neuronas/patología , Ratones , Humanos , Inflamación/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Transducción de Señal , Autofagia , Ratones Endogámicos C57BL , Ácido Glutámico/metabolismo , Ferroptosis , Modelos Animales de Enfermedad , Femenino , Masculino
2.
Handb Exp Pharmacol ; 278: 277-304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36894791

RESUMEN

Endo-lysosomes are membrane-bound acidic organelles that are involved in endocytosis, recycling, and degradation of extracellular and intracellular material. The membranes of endo-lysosomes express several Ca2+-permeable cation ion channels, including two-pore channels (TPC1-3) and transient receptor potential mucolipin channels (TRPML1-3). In this chapter, we will describe four different state-of-the-art Ca2+ imaging approaches, which are well-suited to investigate the function of endo-lysosomal cation channels. These techniques include (1) global cytosolic Ca2+ measurements, (2) peri-endo-lysosomal Ca2+ imaging using genetically encoded Ca2+ sensors that are directed to the cytosolic endo-lysosomal membrane surface, (3) Ca2+ imaging of endo-lysosomal cation channels, which are engineered in order to redirect them to the plasma membrane in combination with approaches 1 and 2, and (4) Ca2+ imaging by directing Ca2+ indicators to the endo-lysosomal lumen. Moreover, we will review useful small molecules, which can be used as valuable tools for endo-lysosomal Ca2+ imaging. Rather than providing complete protocols, we will discuss specific methodological issues related to endo-lysosomal Ca2+ imaging.


Asunto(s)
Calcio , Canales de Potencial de Receptor Transitorio , Humanos , Calcio/metabolismo , Lisosomas/metabolismo , Señalización del Calcio , Cationes/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(30): 18068-18078, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32661165

RESUMEN

Mast cells and basophils are main drivers of allergic reactions and anaphylaxis, for which prevalence is rapidly increasing. Activation of these cells leads to a tightly controlled release of inflammatory mediators stored in secretory granules. The release of these granules is dependent on intracellular calcium (Ca2+) signals. Ca2+ release from endolysosomal compartments is mediated via intracellular cation channels, such as two-pore channel (TPC) proteins. Here, we uncover a mechanism for how TPC1 regulates Ca2+ homeostasis and exocytosis in mast cells in vivo and ex vivo. Notably, in vivo TPC1 deficiency in mice leads to enhanced passive systemic anaphylaxis, reflected by increased drop in body temperature, most likely due to accelerated histamine-induced vasodilation. Ex vivo, mast cell-mediated histamine release and degranulation was augmented upon TPC1 inhibition, although mast cell numbers and size were diminished. Our results indicate an essential role of TPC1 in endolysosomal Ca2+ uptake and filling of endoplasmic reticulum Ca2+ stores, thereby regulating exocytosis in mast cells. Thus, pharmacological modulation of TPC1 might blaze a trail to develop new drugs against mast cell-related diseases, including allergic hypersensitivity.


Asunto(s)
Anafilaxia/etiología , Anafilaxia/metabolismo , Canales de Calcio/deficiencia , Susceptibilidad a Enfermedades , Mastocitos/inmunología , Mastocitos/metabolismo , Biomarcadores , Señalización del Calcio , Degranulación de la Célula , Citocinas/metabolismo , Predisposición Genética a la Enfermedad , Histamina/metabolismo , Inmunoglobulina E/inmunología , Mediadores de Inflamación/metabolismo
4.
Gastroenterology ; 158(6): 1626-1641.e8, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31930989

RESUMEN

BACKGROUND & AIMS: Changes in pancreatic calcium levels affect secretion and might be involved in development of chronic pancreatitis (CP). We investigated the association of CP with the transient receptor potential cation channel subfamily V member 6 gene (TRPV6), which encodes a Ca2+-selective ion channel, in an international cohort of patients and in mice. METHODS: We performed whole-exome DNA sequencing from a patient with idiopathic CP and from his parents, who did not have CP. We validated our findings by sequencing DNA from 300 patients with CP (not associated with alcohol consumption) and 1070 persons from the general population in Japan (control individuals). In replication studies, we sequenced DNA from patients with early-onset CP (20 years or younger) not associated with alcohol consumption from France (n = 470) and Germany (n = 410). We expressed TRPV6 variants in HEK293 cells and measured their activity using Ca2+ imaging assays. CP was induced by repeated injections of cerulein in TRPV6mut/mut mice. RESULTS: We identified the variants c.629C>T (p.A210V) and c.970G>A (p.D324N) in TRPV6 in the index patient. Variants that affected function of the TRPV6 product were found in 13 of 300 patients (4.3%) and 1 of 1070 control individuals (0.1%) from Japan (odds ratio [OR], 48.4; 95% confidence interval [CI], 6.3-371.7; P = 2.4 × 10-8). Twelve of 124 patients (9.7%) with early-onset CP had such variants. In the replication set from Europe, 18 patients with CP (2.0%) carried variants that affected the function of the TRPV6 product compared with 0 control individuals (P = 6.2 × 10-8). Variants that did not affect the function of the TRPV6 product (p.I223T and p.D324N) were overrepresented in Japanese patients vs control individuals (OR, 10.9; 95% CI, 4.5-25.9; P = 7.4 × 10-9 for p.I223T and P = .01 for p.D324N), whereas the p.L299Q was overrepresented in European patients vs control individuals (OR, 3.0; 95% CI, 1.9-4.8; P = 1.2 × 10-5). TRPV6mut/mut mice given cerulein developed more severe pancreatitis than control mice, as shown by increased levels of pancreatic enzymes, histologic alterations, and pancreatic fibrosis. CONCLUSIONS: We found that patients with early-onset CP not associated with alcohol consumption carry variants in TRPV6 that affect the function of its product, perhaps by altering Ca2+ balance in pancreatic cells. TRPV6 regulates Ca2+ homeostasis and pancreatic inflammation.


Asunto(s)
Edad de Inicio , Canales de Calcio/genética , Pancreatitis Crónica/genética , Canales Catiónicos TRPV/genética , Adolescente , Adulto , Anciano , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Niño , Preescolar , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Mutación INDEL , Lactante , Recién Nacido , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Páncreas/patología , Pancreatitis Crónica/patología , Polimorfismo de Nucleótido Simple , Canales Catiónicos TRPV/metabolismo , Secuenciación del Exoma , Adulto Joven
5.
J Allergy Clin Immunol ; 144(4S): S31-S45, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30772496

RESUMEN

Mast cells (MCs), which are best known for their detrimental role in patients with allergic diseases, act in a diverse array of physiologic and pathologic functions made possible by the plurality of MC types. Their various developmental avenues and distinct sensitivity to (micro-) environmental conditions convey extensive heterogeneity, resulting in diverse functions. We briefly summarize this heterogeneity, elaborate on molecular determinants that allow MCs to communicate with their environment to fulfill their tasks, discuss the protease repertoire stored in secretory lysosomes, and consider different aspects of MC signaling. Furthermore, we describe key MC governance mechanisms (ie, the high-affinity receptor for IgE [FcεRI]), the stem cell factor receptor KIT, the IL-4 system, and both Ca2+- and phosphatase-dependent mechanisms. Finally, we focus on distinct physiologic functions, such as chemotaxis, phagocytosis, host defense, and the regulation of MC functions at the mucosal barriers of the lung, gastrointestinal tract, and skin. A deeper knowledge of the pleiotropic functions of MC mediators, as well as the molecular processes of MC regulation and communication, should enable us to promote beneficial MC traits in physiology and suppress detrimental MC functions in patients with disease.


Asunto(s)
Quimiotaxis/inmunología , Mucosa Intestinal/inmunología , Mastocitos/inmunología , Fagocitosis , Mucosa Respiratoria/inmunología , Transducción de Señal/inmunología , Animales , Calcio/inmunología , Humanos , Interleucina-4/inmunología , Mucosa Intestinal/patología , Lisosomas/inmunología , Lisosomas/patología , Mastocitos/patología , Proteínas Proto-Oncogénicas c-kit/inmunología , Receptores de IgE/inmunología , Mucosa Respiratoria/patología
6.
Handb Exp Pharmacol ; 222: 85-128, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24756704

RESUMEN

TRPC4 proteins comprise six transmembrane domains, a putative pore-forming region, and an intracellularly located amino- and carboxy-terminus. Among eleven splice variants identified so far, TRPC4α and TRPC4ß are the most abundantly expressed and functionally characterized. TRPC4 is expressed in various organs and cell types including the soma and dendrites of numerous types of neurons; the cardiovascular system including endothelial, smooth muscle, and cardiac cells; myometrial and skeletal muscle cells; kidney; and immune cells such as mast cells. Both recombinant and native TRPC4-containing channels differ tremendously in their permeability and other biophysical properties, pharmacological modulation, and mode of activation depending on the cellular environment. They vary from inwardly rectifying store-operated channels with a high Ca(2+) selectivity to non-store-operated channels predominantly carrying Na(+) and activated by Gαq- and/or Gαi-coupled receptors with a complex U-shaped current-voltage relationship. Thus, individual TRPC4-containing channels contribute to agonist-induced Ca(2+) entry directly or indirectly via depolarization and activation of voltage-gated Ca(2+) channels. The differences in channel properties may arise from variations in the composition of the channel complexes, in the specific regulatory pathways in the corresponding cell system, and/or in the expression pattern of interaction partners which comprise other TRPC proteins to form heteromultimeric channels. Additional interaction partners of TRPC4 that can mediate the activity of TRPC4-containing channels include (1) scaffolding proteins (e.g., NHERF) that may mediate interactions with signaling molecules in or in close vicinity to the plasma membrane such as Gα proteins or phospholipase C and with the cytoskeleton, (2) proteins in specific membrane microdomains (e.g., caveolin-1), or (3) proteins on cellular organelles (e.g., Stim1). The diversity of TRPC4-containing channels hampers the development of specific agonists or antagonists, but recently, ML204 was identified as a blocker of both recombinant and endogenous TRPC4-containing channels with an IC50 in the lower micromolar range that lacks activity on most voltage-gated channels and other TRPs except TRPC5 and TRPC3. Lanthanides are specific activators of heterologously expressed TRPC4- and TRPC5-containing channels but can block individual native TRPC4-containing channels. The biological relevance of TRPC4-containing channels was demonstrated by knockdown of TRPC4 expression in numerous native systems including gene expression, cell differentiation and proliferation, formation of myotubes, and axonal regeneration. Studies of TRPC4 single and TRPC compound knockout mice uncovered their role for the regulation of vascular tone, endothelial permeability, gastrointestinal contractility and motility, neurotransmitter release, and social exploratory behavior as well as for excitotoxicity and epileptogenesis. Recently, a single-nucleotide polymorphism (SNP) in the Trpc4 gene was associated with a reduced risk for experience of myocardial infarction.


Asunto(s)
Canales Catiónicos TRPC/metabolismo , Secuencia de Aminoácidos , Animales , Señalización del Calcio , Regulación de la Expresión Génica , Genotipo , Humanos , Potenciales de la Membrana , Moduladores del Transporte de Membrana/farmacología , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Fenotipo , Canales Catiónicos TRPC/química , Canales Catiónicos TRPC/efectos de los fármacos , Canales Catiónicos TRPC/genética
7.
J Clin Invest ; 134(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557489

RESUMEN

Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents. Deletion of OCaR1 led to extensive Ca2+ release from NAADP-responsive granules under basal conditions as well as upon stimulation of GPCR receptors. Moreover, OCaR1 deletion exacerbated the disease phenotype in murine models of severe and chronic pancreatitis. Our findings showed OCaR1 as a gatekeeper of Ca2+ release that endows NAADP-sensitive secretory granules with an autoregulatory mechanism preventing uncontrolled exocytosis and pancreatic tissue damage.


Asunto(s)
Canales de Calcio , Calcio , Ratones , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Calcio/metabolismo , Páncreas/metabolismo , Exocitosis/fisiología , Vesículas Secretoras/genética
8.
J Biol Chem ; 287(22): 17930-41, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22427671

RESUMEN

Replacement of aspartate residue 541 by alanine (D541A) in the pore of TRPV6 channels in mice disrupts Ca(2+) absorption by the epididymal epithelium, resulting in abnormally high Ca(2+) concentrations in epididymal luminal fluid and in a dramatic but incomplete loss of sperm motility and fertilization capacity, raising the possibility of residual activity of channels formed by TRPV6(D541A) proteins (Weissgerber, P., Kriebs, U., Tsvilovskyy, V., Olausson, J., Kretz, O., Stoerger, C., Vennekens, R., Wissenbach, U., Middendorff, R., Flockerzi, V., and Freichel, M. (2011) Sci. Signal. 4, ra27). It is known from other cation channels that introducing pore mutations even if they largely affect their conductivity and permeability can evoke considerably different phenotypes compared with the deletion of the corresponding protein. Therefore, we generated TRPV6-deficient mice (Trpv6(-/-)) by deleting exons encoding transmembrane domains with the pore-forming region and the complete cytosolic C terminus harboring binding sites for TRPV6-associated proteins that regulate its activity and plasma membrane anchoring. Using this strategy, we aimed to determine whether the TRPV6(D541A) pore mutant still contributes to residual channel activity and/or channel-independent functions in vivo. Trpv6(-/-) males reveal severe defects in fertility and motility and viability of sperm and a significant increase in epididymal luminal Ca(2+) concentration that is mirrored by a lack of Ca(2+) uptake by the epididymal epithelium. Therewith, Trpv6 excision affects epididymal Ca(2+) handling and male fertility to the same extent as the introduction of the D541A pore mutation, arguing against residual functions of the TRPV6(D541A) pore mutant in epididymal epithelial cells.


Asunto(s)
Canales de Calcio/genética , Calcio/metabolismo , Epidídimo/metabolismo , Fertilidad/genética , Eliminación de Gen , Mutación , Canales Catiónicos TRPV/genética , Animales , Secuencia de Bases , Cartilla de ADN , Femenino , Masculino , Ratones , Ratones Noqueados , Motilidad Espermática/genética
9.
Cell Rep ; 37(3): 109851, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686339

RESUMEN

Early embryogenesis depends on proper control of intracellular homeostasis of ions including Ca2+ and Mg2+. Deletion of the Ca2+ and Mg2+ conducting the TRPM7 channel is embryonically lethal in mice but leaves compaction, blastomere polarization, blastocoel formation, and correct specification of the lineages of the trophectoderm and inner cell mass unaltered despite that free cytoplasmic Ca2+ and Mg2+ is reduced at the two-cell stage. Although Trpm7-/- embryos are able to hatch from the zona pellucida, no expansion of Trpm7-/- trophoblast cells can be observed, and Trpm7-/- embryos are not identifiable in utero at E6.5 or later. Given the proliferation and adhesion defect of Trpm7-/- trophoblast stem cells and the ability of Trpm7-/- ESCs to develop to embryos in tetraploid embryo complementation assays, we postulate a critical role of TRPM7 in trophectoderm cells and their failure during implantation as the most likely explanation of the developmental arrest of Trpm7-deficient mouse embryos.


Asunto(s)
Calcio/metabolismo , Adhesión Celular , Proliferación Celular , Magnesio/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Canales Catiónicos TRPM/deficiencia , Trofoblastos/metabolismo , Animales , Muerte Celular , Linaje de la Célula , Células Cultivadas , Implantación del Embrión , Desarrollo Embrionario , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones/patología , Transducción de Señal , Canales Catiónicos TRPM/genética , Trofoblastos/patología
10.
Gastroenterology ; 137(4): 1415-24, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19549525

RESUMEN

BACKGROUND & AIMS: Downstream effects of muscarinic receptor stimulation in intestinal smooth muscle include contraction and intestinal transit. We thought to determine whether classic transient receptor potential (TRPC) channels integrate the intracellular signaling cascades evoked by the stimulated receptors and thereby contribute to the control of the membrane potential, Ca-influx, and cell responses. METHODS: We created trpc4-, trpc6-, and trpc4/trpc6-gene-deficient mice and analyzed them for intestinal smooth muscle function in vitro and in vivo. RESULTS: In intestinal smooth muscle cells TRPC4 forms a 55 pS cation channel and underlies more than 80% of the muscarinic receptor-induced cation current (mI(CAT)). The residual mI(CAT) depends on the expression of TRPC6, indicating that TRPC6 and TRPC4 determine mI(CAT) channel activity independent of other channel subunits. In TRPC4-deficient ileal myocytes the carbachol-induced membrane depolarizations are diminished greatly and the atropine-sensitive contraction elicited by acetylcholine release from excitatory motor neurons is reduced greatly. Additional deletion of TRPC6 aggravates these effects. Intestinal transit is slowed down in mice lacking TRPC4 and TRPC6. CONCLUSIONS: In intestinal smooth muscle cells TRPC4 and TRPC6 channels are gated by muscarinic receptors and are responsible for mI(CAT). They couple muscarinic receptors to depolarization of intestinal smooth muscle cells and voltage-activated Ca(2+)-influx and contraction, and thereby accelerate small intestinal motility in vivo.


Asunto(s)
Señalización del Calcio , Motilidad Gastrointestinal , Íleon/metabolismo , Contracción Muscular , Músculo Liso/metabolismo , Canales Catiónicos TRPC/deficiencia , Acetilcolina/metabolismo , Animales , Atropina/farmacología , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/efectos de los fármacos , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Estimulación Eléctrica , Sistema Nervioso Entérico/metabolismo , Motilidad Gastrointestinal/efectos de los fármacos , Íleon/efectos de los fármacos , Íleon/inervación , Activación del Canal Iónico , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Antagonistas Muscarínicos/farmacología , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso/inervación , Miocitos del Músculo Liso/metabolismo , Receptores Muscarínicos/metabolismo , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6
11.
Front Immunol ; 11: 564, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32322252

RESUMEN

Mast cells are a heterogeneous group of immune cells. The simplest and commonly accepted classification divides them in two groups according to their protease content. We have compared the action of diverse secretagogues on bone marrow derived (BMMC) and peritoneal (PMC) mast cells which represent classical models of mucosal and connective tissue type mast cells in mice. Whereas, antigen stimulation of the FcεRI receptors was similarly effective in triggering elevations of free intracellular Ca2+ concentration ([Ca2+]i) in both BMMC and PMC, robust [Ca2+]i rise following Endothelin-1 stimulation was observed only in a fraction of BMMC. Leukotriene C4 activating cysteinyl leukotriene type I receptors failed to evoke [Ca2+]i rise in either mast cell model. Stimulation of the recently identified target of many small-molecule drugs associated with systemic pseudo-allergic reactions, Mrgprb2, with compound 48/80, a mast cell activator with unknown receptor studied for many years, triggered Ca2+ oscillations in BMMC and robust [Ca2+]i rise in PMCs similarly to that evoked by FcεRI stimulation. [Ca2+]i rise in PMC could also be evoked by other Mrgprb2 agonists such as Tubocurarine, LL-37, and Substance P. The extent of [Ca2+]i rise correlated with mast cell degranulation. Expression analysis of TRPC channels as potential candidates mediating agonist evoked Ca2+ entry revealed the presence of transcripts of all members of the TRPC subfamily of TRP channels in PMCs. The amplitude and AUC of compound 48/80-evoked [Ca2+]i rise was reduced by ~20% in PMC from Trpc1/4/6-/- mice compared to Trpc1/4-/- littermatched control mice, whereas FcεRI-evoked [Ca2+]i rise was unaltered. Whole-cell patch clamp recordings showed that the reduction in compound 48/80-evoked [Ca2+]i rise in Trpc1/4/6-/- PMC was accompanied by a reduced amplitude of Compound 48/80-induced cation currents which exhibited typical features of TRPC currents. Together, this study demonstrates that PMC are an appropriate mast cell model to study mechanisms of Mrgprb2 receptor-mediated mast cell activation, and it reveals that TRPC channels contribute at least partially to Mrgprb2-mediated mast cellactivation but not following FcεRI stimulation. However, the channels conducting most of the Ca2+ entry in mast cells triggered by Mrgprb2 receptor stimulation remains to be identified.


Asunto(s)
Señalización del Calcio/inmunología , Degranulación de la Célula/inmunología , Mastocitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canales Catiónicos TRPC/deficiencia , Animales , Células de la Médula Ósea/inmunología , Masculino , Mastocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Peritoneo/citología , Peritoneo/inmunología , Canales Catiónicos TRPC/inmunología
12.
Front Cell Dev Biol ; 8: 849, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32974355

RESUMEN

Blood-brain barrier (BBB) dysfunction is critically involved in determining the extent of several central nervous systems (CNS) pathologies and here in particular neuroinflammatory conditions. Inhibiting BBB breakdown could reduce the level of vasogenic edema and the number of immune cells invading the CNS, thereby counteracting neuronal injury. Transient receptor potential (TRP) channels have an important role as environmental sensors and constitute attractive therapeutic targets that are involved in calcium homeostasis during pathologies of the CNS. Transient receptor potential vanilloid 4 (TRPV4) is a calcium permeable, non-selective cation channel highly expressed in endothelial cells. As it is involved in the regulation of the blood brain barrier permeability and consequently cerebral edema formation, we anticipated a regulatory role of TRPV4 in CNS inflammation and subsequent neuronal damage. Here, we detected an increase in transendothelial resistance in mouse brain microvascular endothelial cells (MbMECs) after treatment with a selective TRPV4 inhibitor. However, this effect was abolished after the addition of IFNγ and TNFα indicating that inflammatory conditions override TRPV4-mediated permeability. Accordingly, we did not observe a protection of Trpv4-deficient mice when compared to wildtype controls in a preclinical model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), and no differences in infarct sizes following transient middle cerebral artery occlusion (tMCAO), the experimental stroke model, which leads to an acute postischemic inflammatory response. Furthermore, Evans Blue injections did not show differences in alterations of the blood brain barrier (BBB) permeability between genotypes in both animal models. Together, TRPV4 does not regulate brain microvascular endothelial permeability under inflammation.

13.
Front Cell Dev Biol ; 8: 496, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32676502

RESUMEN

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that evokes calcium release from intracellular organelles by the engagement of calcium release channels, including members of the Transient Receptor Potential (TRP) family, such as TRPML1, the (structurally) related Two Pore Channel type 1 (TPC1) and TPC2 channels as well as Ryanodine Receptors type 1 (RYR1; Guse, 2012). NAADP evokes calcium release from acidic calcium stores of many cell types (Guse, 2012), and NAADP-sensitive Ca2+ stores have been described in hippocampal neurons of the rat (Bak et al., 1999; McGuinness et al., 2007). Glutamate triggers Ca2+-mediated neuronal excitotoxicity in inflammation-induced neurodegenerative pathologies such as Multiple Sclerosis (MS; Friese et al., 2014), and when applied extracellularly to neurons glutamate can elevate NAADP levels in these cells. Accordingly, glutamate-evoked Ca2+ signals from intracellular organelles were inhibited by preventing organelle acidification (Pandey et al., 2009). Analysis of reported RNA sequencing experiments of cultured hippocampal neurons revealed the abundance of Mcoln1 (encoding TRPML1), Tpcn1, and Tpcn2 (encoding TPC1 and TPC2, respectively) as potential NAADP target channels in these cells. Transcripts encoding Ryr1 were not found in contrast to Ryr2 and Ryr3. To study the contribution of NAADP signaling to glutamate-evoked calcium transients in murine hippocampal neurons we used the NAADP antagonists Ned-19 (Naylor et al., 2009) and BZ194 (Dammermann et al., 2009). Our results show that both NAADP antagonists significantly reduce glutamate-evoked calcium transients. In addition to extracellular glutamate application, we studied synchronized calcium oscillations in the cells of the neuronal cultures evoked by addition of the GABAA receptor antagonist bicuculline. Pretreatment with Ned-19 (50 µM) or BZ194 (100 µM) led to an increase in the frequency of bicuculline-induced calcium oscillations at the cost of calcium transient amplitudes. Interestingly, Ned-19 triggered a rise in intracellular calcium concentrations 25 min after bicuculline stimulation, leading to the question whether NAADP acts as a neuroprotective messenger in hippocampal neurons. Taken together, our results are in agreement with the concept that NAADP signaling significantly contributes to glutamate evoked Ca2+ rise in hippocampal neurons and to the amplitude and frequency of synchronized Ca2+ oscillations triggered by spontaneous glutamate release events.

14.
Cell Metab ; 32(1): 56-70.e7, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32589947

RESUMEN

The combination of aging populations with the obesity pandemic results in an alarming rise in non-communicable diseases. Here, we show that the enigmatic adenosine A2B receptor (A2B) is abundantly expressed in skeletal muscle (SKM) as well as brown adipose tissue (BAT) and might be targeted to counteract age-related muscle atrophy (sarcopenia) as well as obesity. Mice with SKM-specific deletion of A2B exhibited sarcopenia, diminished muscle strength, and reduced energy expenditure (EE), whereas pharmacological A2B activation counteracted these processes. Adipose tissue-specific ablation of A2B exacerbated age-related processes and reduced BAT EE, whereas A2B stimulation ameliorated obesity. In humans, A2B expression correlated with EE in SKM, BAT activity, and abundance of thermogenic adipocytes in white fat. Moreover, A2B agonist treatment increased EE from human adipocytes, myocytes, and muscle explants. Mechanistically, A2B forms heterodimers required for adenosine signaling. Overall, adenosine/A2B signaling links muscle and BAT and has both anti-aging and anti-obesity potential.


Asunto(s)
Envejecimiento/metabolismo , Obesidad/metabolismo , Receptor de Adenosina A2B/metabolismo , Adolescente , Adulto , Animales , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Receptor de Adenosina A2B/deficiencia , Transducción de Señal , Adulto Joven
15.
Cell Calcium ; 78: 66-75, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30658323

RESUMEN

Methylglyoxal (MG) is a by-product of glucose metabolism and its accumulation has been linked to the development of diabetic complications such as retinopathy and nephropathy by affecting multiple signalling pathways. However, its influence on the intracellular Ca2+ homeostasis and particularly Ca2+ entry, which has been reported to be mediated via TRPA1 channels in DRG neurons, has not been studied in much detail in other cell types. In this study, we report the consequences of acute and long-term MG application on intracellular Ca2+ levels in endothelial cells. We showed that acute MG application doesn't evoke any instantaneous changes in the intracellular Ca2+ concentration in immortalized mouse cardiac endothelial cells (MCECs) and murine microvascular endothelial cells (muMECs). In contrast, an MG-induced rise in intracellular Ca2+ level was observed in primary mouse mesangial cells within 30 s, indicating that the modulation of Ca2+ homeostasis by MG is strictly cell type specific. The formation of the MG-derived advanced glycation end product (AGE) MG-H1 was found to be time and concentration-dependent in MCECs. Likewise, MG pre-incubation for 6 h increased the angiotensin II-evoked Ca2+ entry in MCECs and muMECs which was abrogated by inhibition of Calcium release activated calcium (CRAC) channels with GSK-7975A, but unaffected by an inhibitor specific to TRPA1 channels. Quantitative PCR analysis revealed that MG pre-treatment did not affect expression of the genes encoding the angiotensin receptors AT1R (Agtr 1a & Agtr 1b), Trpa1 nor Orai1, Orai2, Orai3, Stim1, Stim2 and Saraf which operate as constituents or regulators of CRAC channels and store-operated Ca2+ entry (SOCE) in other cell types. Together, our results show that long-term MG stimulation leads to the formation of glycation end products, which facilitates the agonist-evoked Ca2+ entry in endothelial cells, and this could be a new pathway that might lead to MG-evoked vasoregression observed in diabetic vasculopathies.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Calcio/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Piruvaldehído/farmacología , Animales , Células Cultivadas , Ratones
17.
J Vis Exp ; (137)2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-30035759

RESUMEN

Mast cells (MCs), as a part of the immune system, play a key role in defending the host against several pathogens and in the initiation of the allergic immune response. The activation of MCs via the cross-linking of surface IgE bound to high affinity IgE receptor (FcεRI), as well as through the stimulation of several other receptors, initiates the rise of the free intracellular Ca2+ level ([Ca2+]i) that promotes the release of inflammatory and allergic mediators. The identification of molecular constituents involved in these signaling pathways is crucial for understanding the regulation of MC function. In this article, we describe a protocol for the isolation of murine connective tissue type MCs by peritoneal lavage and cultivation of peritoneal MCs (PMCs). Cultures of MCs from various knockout mouse models by this methodology represent a useful approach to the identification of proteins involved in MC signaling pathways. In addition, we also describe a protocol for single cell Fura-2 imaging as an important technique for the quantification of Ca2+ signaling in MCs. Fluorescence-based monitoring of [Ca2+]i is a reliable and commonly used approach to study Ca2+ signaling events, including store-operated calcium entry, which is of utmost importance for MC activation. For the analysis of MC degranulation, we describe a ß-hexosaminidase release assay. The amount of ß-hexosaminidase released into the culture medium is considered as a degranulation marker for all three different secretory subsets described in MCs. ß-hexosaminidase can easily be quantified by its reaction with a colorigenic substrate in a microtiter plate colorimetric assay. This highly reproducible technique is cost-effective and requires no specialized equipment. Overall, the provided protocol demonstrates a high yield of MCs expressing typical MC surface markers, displaying typical morphological and phenotypic features of MCs, and demonstrating highly reproducible responses to secretagogues in Ca2+-imaging and degranulation assays.


Asunto(s)
Mastocitos/inmunología , Animales , Ratones , Peritoneo
18.
Cell Calcium ; 71: 24-33, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29604961

RESUMEN

All three members of the Orai family of cation channels-Orai1, Orai2 and Orai3-are integral membrane proteins that can form store-operated Ca2+ channels resembling endogenous calcium release-activated channels (CRAC) in many aspects. Loss of function studies in human and murine models revealed many functions of Orai1 proteins not only for Ca2+ homeostasis, but also for cellular and systemic functions in many cell types. By contrast, the knowledge regarding the contribution of Orai2 and Orai3 proteins in these processes is sparse. In this study, we report the generation of mouse models with targeted inactivation of the Orai2 gene to study Orai2 function in peritoneal mast cells (PMC), a classical cell model for CRAC channels and Ca2+-dependent exocytosis of inflammatory mediators. We show that the Ca2+ rise triggered by agonists acting on high-affinity Fc receptors for IgE or on MAS-related G protein-coupled receptors is significantly increased in Orai2-deficient mast cells. Ca2+ entry triggered by depletion of intracellular stores (SOCE) is also increased in Orai2-/- PMCs at high (2mM) extracellular Ca2+ concentration, whereas SOCE is largely reduced upon re-addtion of lower (0.1mM) Ca2+ concentration. Likewise, the density of CRAC currents, Ca2+-dependent mast cell degranulation, and mast cell-mediated anaphylaxis are intensified in Orai2-deficient mice. These results show that the presence of Orai2 proteins limits receptor-evoked Ca2+ transients, store-operated Ca2+ entry (SOCE) as well as degranulation of murine peritoneal mast cells but also raise the idea that Orai2 proteins contribute to Ca2+ entry in connective tissue type mast cells in discrete operation modes depending on the availability of calcium ions in the extracellular space.


Asunto(s)
Anafilaxia/metabolismo , Calcio/metabolismo , Degranulación de la Célula , Eliminación de Gen , Activación del Canal Iónico , Mastocitos/fisiología , Proteína ORAI2/genética , Alelos , Animales , Proteínas Bacterianas/metabolismo , Señalización del Calcio , Separación Celular , Espacio Extracelular/metabolismo , Marcación de Gen , Genes Reporteros , Proteínas Luminiscentes/metabolismo , Ratones Endogámicos C57BL , Cavidad Peritoneal/citología , Receptores de IgE
19.
Cell Calcium ; 42(4-5): 477-87, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17580090

RESUMEN

Voltage activated L-type Ca(2+) channels are the principal Ca(2+) channels in intestinal smooth muscle cells. They comprise the ion conducting Ca(V)1 pore and the ancillary subunits alpha(2)delta and beta. Of the four Ca(V)beta subunits Ca(V)beta(3) is assumed to be the relevant Ca(V)beta protein in smooth muscle. In protein lysates isolated from mouse ileum longitudinal smooth muscle we could identify the Ca(V)1.2, Ca(V)alpha(2), Ca(V)beta(2) and Ca(V)beta(3) proteins, but not the Ca(V)beta(1) and Ca(V)beta(4) proteins. Protein levels of Ca(V)1.2, Ca(V)alpha(2) and Ca(V)beta(2) are not altered in ileum smooth muscle obtained from Ca(V)beta(3)-deficient mice indicating that there is no compensatory increase of the expression of these channel proteins. Neither the Ca(V)beta(2) nor the other Ca(V)beta proteins appear to substitute for the lacking Ca(V)beta(3). L-type Ca(2+) channel properties including current density, inactivation kinetics as well as Cd(2+)- and dihydropyridine sensitivity were identical in cells of both genotypes suggesting that they do not require the presence of a Ca(V)beta(3) protein. However, a key hallmark of the Ca(V)beta modulation of Ca(2+) current, the hyperpolarisation of channel activation is slightly but significantly reduced by 4 mV. In addition to L-type Ca(2+) currents T-type Ca(2+) currents could be recorded in the murine ileum smooth muscle cells, but T-type currents were not affected by the lack of Ca(V)beta(3). Both proteins, Ca(V)beta(2) and Ca(V)beta(3) are localized near the plasma membrane and the localization of Ca(V)beta(2) is not altered in Ca(V)beta(3) deficient cells. Spontaneous contractions and potassium and carbachol induced contractions are not significantly different between ileum longitudinal smooth muscle strips from mice of both genotypes. In summary the data show that in ileum smooth muscle cells, Ca(V)beta(3) has only subtle effects on L-type Ca(2+) currents, appears not to be required for spontaneous and potassium induced contraction but might have a function beyond being a Ca(2+) channel subunit.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Canales de Calcio/fisiología , Íleon/fisiología , Contracción Muscular , Músculo Liso/fisiología , Animales , Canales de Calcio/análisis , Canales de Calcio/genética , Canales de Calcio Tipo L/análisis , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Conductividad Eléctrica , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones , Ratones Noqueados , Músculo Liso/química , Músculo Liso/metabolismo , Técnicas de Placa-Clamp
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA