Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Radiol ; 29(2): 889-897, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29967956

RESUMEN

OBJECTIVES: To identify the radiomics signature allowing preoperative discrimination of lung invasive adenocarcinomas from non-invasive lesions manifesting as ground-glass nodules. METHODS: This retrospective primary cohort study included 160 pathologically confirmed lung adenocarcinomas. Radiomics features were extracted from preoperative non-contrast CT images to build a radiomics signature. The predictive performance and calibration of the radiomics signature were evaluated using intra-cross (n=76), external non-contrast-enhanced CT (n=75) and contrast-enhanced CT (n=84) validation cohorts. The performance of radiomics signature and CT morphological and quantitative indices were compared. RESULTS: 355 three-dimensional radiomics features were extracted, and two features were identified as the best discriminators to build a radiomics signature. The radiomics signature showed a good ability to discriminate between invasive adenocarcinomas and non-invasive lesions with an accuracy of 86.3%, 90.8%, 84.0% and 88.1%, respectively, in the primary and validation cohorts. It remained an independent predictor after adjusting for traditional preoperative factors (odds ratio 1.87, p < 0.001) and demonstrated good calibration in all cohorts. It was a better independent predictor than CT morphology or mean CT value. CONCLUSIONS: The radiomics signature showed good predictive performance in discriminating between invasive adenocarcinomas and non-invasive lesions. Being a non-invasive biomarker, it could assist in determining therapeutic strategies for lung adenocarcinoma. KEY POINTS: • The radiomics signature was a non-invasive biomarker of lung invasive adenocarcinoma. • The radiomics signature outweighed CT morphological and quantitative indices. • A three-centre study showed that radiomics signature had good predictive performance.


Asunto(s)
Adenocarcinoma del Pulmón/diagnóstico por imagen , Adenocarcinoma del Pulmón/patología , Biomarcadores de Tumor , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Tomografía Computarizada Multidetector/métodos , Cuidados Preoperatorios/métodos , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Interpretación de Imagen Radiográfica Asistida por Computador , Estudios Retrospectivos
2.
Eur Radiol ; 29(4): 1703-1713, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30324380

RESUMEN

OBJECTIVE: To validate three proposed definitions of the "solid" component of subsolid nodules, as compared to CT histograms and the use of different window settings, for discriminating the invasiveness of adenocarcinomas in a manner that facilitates routine clinical assessment. METHODS: We retrospectively analyzed 328 pathologically confirmed lung adenocarcinomas, manifesting as subsolid nodules. Three-dimensional CT histograms were generated by setting 11 CT attenuation intervals from - 400 to 50 HU, at 50 HU intervals, and the voxel percentage within each CT attenuation interval was generated automatically. Three definitions of the "solid" component were proposed, and 10 medium window settings were set to evaluate the "solid" component. The diagnostic performance of the three definitions for identifying invasive adenocarcinoma was compared with that of CT histogram analysis and subjective evaluation with medium window settings. RESULTS: A parallel diagnosis using five intervals with the largest AUC (AUC ≥ 0.797) demonstrated good differential diagnostic performance, with 78% sensitivity and 73.7% specificity. Definition 2 (visibility in the mediastinum window) yielded higher accuracy (75.6%) than the other two definitions (p < 0.01). A medium window setting of - 50 WL/2 WW gave a larger AUC than the other nine medium window settings as well as definition 2, with 82.5% specificity and 88.5% PPV, which was higher than those of parallel diagnosis with CT histogram and definition 2. CONCLUSION: Using - 50 WL/2 WW is the optimum approach for evaluating the "solid" component and discriminating invasiveness, superior to using 3D CT histograms and definition 2, and convenient in routine clinical assessment. KEY POINTS: • - 50 WL/2 WW gave a larger AUC than definition 2. • The specificity of - 50 WL/2 WW was higher than CT histograms. • - 50 WL/2 WW offers the best evaluation of the solid component.


Asunto(s)
Adenocarcinoma del Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Adenocarcinoma del Pulmón/patología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Estudios Retrospectivos , Sensibilidad y Especificidad , Nódulo Pulmonar Solitario/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Adulto Joven
3.
Eur Radiol ; 29(8): 4333-4340, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30689035

RESUMEN

OBJECTIVE: To evaluate quantitative parameters of nonsolid nodules on paired inspiratory and expiratory computed tomography (CT) and to examine whether these parameters are sensitive to lung inflation reflected by lung volume. METHODS: Thirty-three patients with 41 nonsolid nodules were included in this prospective study. Paired inspiratory and low-dose respiratory plain chest CT were performed. The volume and density of nonsolid nodule(s), both lungs, the right and left lung, and five lobes, were analyzed in inspiratory and expiratory CT scans. The ratio of expiratory to inspiratory parameters was calculated and labeled as parameter(E-I)/I. To standardize the changes in nonsolid nodule quantitative parameters, the ratio of nonsolid nodule parameter to lung parameter was also calculated. Quantitative parameters were compared between inspiratory and expiratory CT. RESULTS: Nonsolid nodule volumes on expiratory CT were reduced by 19.8% ± 12.9%, while the density was increased by 11.4% ± 8.8%. The volume of nonsolid nodules was significantly greater on inspiratory compared with expiratory CT (p < 0.001). The density of nonsolid nodules was significantly greater on expiratory than inspiratory CT (p < 0.001). The volume(E-I)/I was significantly greater than density(E-I)/I both in nonsolid nodules and lung. The volume(E-I)/I and density(E-I)/I of nonsolid nodules were independent of size. The density(E-I)/I of nonsolid nodule was greater in the lower lobe than that in the upper lobe (p = 0.002). CONCLUSION: Volume changes in nonsolid nodules were more sensitive than density changes in expiratory phase. The density of lower lobe nodules was more susceptible to respiration. Expiratory scanning is not recommended for quantification of nonsolid nodules and/or follow-up. KEY POINTS: • The nonsolid nodule volume on expiratory CT was reduced by 19.8% ± 12.9%. • The nonsolid nodule density on expiratory CT was increased by 11.4% ± 8.8%. • The volume (E-I)/I and density (E-I)/I of nonsolid nodules were independent of size.


Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Nódulo Pulmonar Solitario/diagnóstico por imagen , Adulto , Anciano , Espiración , Femenino , Humanos , Inhalación , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Radiografía Torácica/métodos , Nódulo Pulmonar Solitario/patología , Tomografía Computarizada por Rayos X/métodos
4.
J Cardiothorac Surg ; 19(1): 307, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822379

RESUMEN

BACKGROUND: Accurate prediction of visceral pleural invasion (VPI) in lung adenocarcinoma before operation can provide guidance and help for surgical operation and postoperative treatment. We investigate the value of intratumoral and peritumoral radiomics nomograms for preoperatively predicting the status of VPI in patients diagnosed with clinical stage IA lung adenocarcinoma. METHODS: A total of 404 patients from our hospital were randomly assigned to a training set (n = 283) and an internal validation set (n = 121) using a 7:3 ratio, while 81 patients from two other hospitals constituted the external validation set. We extracted 1218 CT-based radiomics features from the gross tumor volume (GTV) as well as the gross peritumoral tumor volume (GPTV5, 10, 15), respectively, and constructed radiomic models. Additionally, we developed a nomogram based on relevant CT features and the radscore derived from the optimal radiomics model. RESULTS: The GPTV10 radiomics model exhibited superior predictive performance compared to GTV, GPTV5, and GPTV15, with area under the curve (AUC) values of 0.855, 0.842, and 0.842 in the three respective sets. In the clinical model, the solid component size, pleural indentation, solid attachment, and vascular convergence sign were identified as independent risk factors among the CT features. The predictive performance of the nomogram, which incorporated relevant CT features and the GPTV10-radscore, outperformed both the radiomics model and clinical model alone, with AUC values of 0.894, 0.828, and 0.876 in the three respective sets. CONCLUSIONS: The nomogram, integrating radiomics features and CT morphological features, exhibits good performance in predicting VPI status in lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Invasividad Neoplásica , Estadificación de Neoplasias , Nomogramas , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/cirugía , Persona de Mediana Edad , Tomografía Computarizada por Rayos X/métodos , Adenocarcinoma del Pulmón/cirugía , Adenocarcinoma del Pulmón/diagnóstico por imagen , Adenocarcinoma del Pulmón/patología , Estadificación de Neoplasias/métodos , Anciano , Estudios Retrospectivos , Pleura/diagnóstico por imagen , Pleura/patología , Neoplasias Pleurales/diagnóstico por imagen , Neoplasias Pleurales/cirugía , Neoplasias Pleurales/patología , Radiómica
5.
J Cancer Res Clin Oncol ; 150(4): 185, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598007

RESUMEN

PURPOSE: This study aims to assess the predictive value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) radiological features and the maximum standardized uptake value (SUVmax) in determining the presence of spread through air spaces (STAS) in clinical-stage IA non-small cell lung cancer (NSCLC). METHODS: A retrospective analysis was conducted on 180 cases of NSCLC with postoperative pathological assessment of STAS status, spanning from September 2019 to September 2023. Of these, 116 cases from hospital one comprised the training set, while 64 cases from hospital two formed the testing set. The clinical information, tumor SUVmax, and 13 related CT features were analyzed. Subgroup analysis was carried out based on tumor density type. In the training set, univariable and multivariable logistic regression analyses were employed to identify the most significant variables. A multivariable logistic regression model was constructed and the corresponding nomogram was developed to predict STAS in NSCLC, and its diagnostic efficacy was evaluated in the testing set. RESULTS: SUVmax, consolidation-to-tumor ratio (CTR), and lobulation sign emerged as the best combination of variables for predicting STAS in NSCLC. Among these, SUVmax and CTR were identified as independent predictors for STAS prediction. The constructed prediction model demonstrated area under the curve (AUC) values of 0.796 and 0.821 in the training and testing sets, respectively. Subgroup analysis revealed a 2.69 times higher STAS-positive rate in solid nodules compared to part-solid nodules. SUVmax was an independent predictor for predicting STAS in solid nodular NSCLC, while CTR and an emphysema background were independent predictors for STAS in part-solid nodular NSCLC. CONCLUSION: Our nomogram based on preoperative 18F-FDG PET/CT radiological features and SUVmax effectively predicts STAS status in clinical-stage IA NSCLC. Furthermore, our study highlights that metabolic parameters and CT variables associated with STAS differ between solid and part-solid nodular NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Nomogramas , Estudios Retrospectivos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/cirugía
6.
J Imaging Inform Med ; 37(2): 520-535, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38343212

RESUMEN

The study aims to investigate the value of intratumoral and peritumoral radiomics and clinical-radiological features for predicting spread through air spaces (STAS) in patients with clinical stage IA non-small cell lung cancer (NSCLC). A total of 336 NSCLC patients from our hospital were randomly divided into the training cohort (n = 236) and the internal validation cohort (n = 100) at a ratio of 7:3, and 69 patients from the other two external hospitals were collected as the external validation cohort. Univariate and multivariate analyses were used to select clinical-radiological features and construct a clinical model. The GTV, PTV5, PTV10, PTV15, PTV20, GPTV5, GPTV10, GPTV15, and GPTV20 models were constructed based on intratumoral and peritumoral (5 mm, 10 mm, 15 mm, 20 mm) radiomics features. Additionally, the radscore of the optimal radiomics model and clinical-radiological predictors were used to construct a combined model and plot a nomogram. Lastly, the ROC curve and AUC value were used to evaluate the diagnostic performance of the model. Tumor density type (OR = 6.738) and distal ribbon sign (OR = 5.141) were independent risk factors for the occurrence of STAS. The GPTV10 model outperformed the other radiomics models, and its AUC values were 0.887, 0.876, and 0.868 in the three cohorts. The AUC values of the combined model constructed based on GPTV10 radscore and clinical-radiological predictors were 0.901, 0.875, and 0.878. DeLong test results revealed that the combined model was superior to the clinical model in the three cohorts. The nomogram based on GPTV10 radscore and clinical-radiological features exhibited high predictive efficiency for STAS status in NSCLC.

7.
Int J Chron Obstruct Pulmon Dis ; 19: 1167-1175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38826698

RESUMEN

Purpose: To develop a novel method for calculating small airway resistance using computational fluid dynamics (CFD) based on CT data and evaluate its value to identify COPD. Patients and Methods: 24 subjects who underwent chest CT scans and pulmonary function tests between August 2020 and December 2020 were enrolled retrospectively. Subjects were divided into three groups: normal (10), high-risk (6), and COPD (8). The airway from the trachea down to the sixth generation of bronchioles was reconstructed by a 3D slicer. The small airway resistance (RSA) and RSA as a percentage of total airway resistance (RSA%) were calculated by CFD combined with airway resistance and FEV1 measured by pulmonary function test. A correlation analysis was conducted between RSA and pulmonary function parameters, including FEV1/FVC, FEV1% predicted, MEF50% predicted, MEF75% predicted and MMEF75/25% predicted. Results: The RSA and RSA% were significantly different among the three groups (p<0.05) and related to FEV1/FVC (r = -0.70, p < 0.001; r = -0.67, p < 0.001), FEV1% predicted (r = -0.60, p = 0.002; r = -0.57, p = 0.004), MEF50% predicted (r = -0.64, p = 0.001; r = -0.64, p = 0.001), MEF75% predicted (r = -0.71, p < 0.001; r = -0.60, p = 0.002) and MMEF 75/25% predicted (r = -0.64, p = 0.001; r = -0.64, p = 0.001). Conclusion: Airway CFD is a valuable method for estimating the small airway resistance, where the derived RSA will aid in the early diagnosis of COPD.


Asunto(s)
Resistencia de las Vías Respiratorias , Hidrodinámica , Pulmón , Valor Predictivo de las Pruebas , Enfermedad Pulmonar Obstructiva Crónica , Tomografía Computarizada por Rayos X , Humanos , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Masculino , Estudios Retrospectivos , Femenino , Persona de Mediana Edad , Anciano , Volumen Espiratorio Forzado , Pulmón/fisiopatología , Pulmón/diagnóstico por imagen , Capacidad Vital , Simulación por Computador , Interpretación de Imagen Radiográfica Asistida por Computador , Pruebas de Función Respiratoria/métodos
8.
Mil Med Res ; 11(1): 14, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38374260

RESUMEN

BACKGROUND: Computed tomography (CT) plays a great role in characterizing and quantifying changes in lung structure and function of chronic obstructive pulmonary disease (COPD). This study aimed to explore the performance of CT-based whole lung radiomic in discriminating COPD patients and non-COPD patients. METHODS: This retrospective study was performed on 2785 patients who underwent pulmonary function examination in 5 hospitals and were divided into non-COPD group and COPD group. The radiomic features of the whole lung volume were extracted. Least absolute shrinkage and selection operator (LASSO) logistic regression was applied for feature selection and radiomic signature construction. A radiomic nomogram was established by combining the radiomic score and clinical factors. Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were used to evaluate the predictive performance of the radiomic nomogram in the training, internal validation, and independent external validation cohorts. RESULTS: Eighteen radiomic features were collected from the whole lung volume to construct a radiomic model. The area under the curve (AUC) of the radiomic model in the training, internal, and independent external validation cohorts were 0.888 [95% confidence interval (CI) 0.869-0.906], 0.874 (95%CI 0.844-0.904) and 0.846 (95%CI 0.822-0.870), respectively. All were higher than the clinical model (AUC were 0.732, 0.714, and 0.777, respectively, P < 0.001). DCA demonstrated that the nomogram constructed by combining radiomic score, age, sex, height, and smoking status was superior to the clinical factor model. CONCLUSIONS: The intuitive nomogram constructed by CT-based whole-lung radiomic has shown good performance and high accuracy in identifying COPD in this multicenter study.


Asunto(s)
Nomogramas , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Radiómica , Estudios Retrospectivos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Biomarcadores , Tomografía Computarizada por Rayos X , Pulmón/diagnóstico por imagen
9.
Diagn Interv Radiol ; 29(2): 379-389, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36988049

RESUMEN

PURPOSE: Preoperative prediction of visceral pleural invasion (VPI) is important because it enables thoracic surgeons to choose appropriate surgical plans. This study aimed to develop and validate a multivariate logistic regression model incorporating the maximum standardized uptake value (SUVmax) and valuable computed tomography (CT) signs for the non-invasive prediction of VPI status in subpleural clinical stage IA lung adenocarcinoma patients before surgery. METHODS: A total of 140 patients with subpleural clinical stage IA peripheral lung adenocarcinoma were recruited and divided into a training set (n = 98) and a validation set (n = 42), according to the positron emission tomography/CT examination temporal sequence, with a 7:3 ratio. Next, VPI-positive and VPI-negative groups were formed based on the pathological results. In the training set, the clinical information, the SUVmax, the relationship between the tumor and the pleura, and the CT features were analyzed using univariate analysis. The variables with significant differences were included in the multivariate analysis to construct a prediction model. A nomogram based on multivariate analysis was developed, and its predictive performance was verified in the validation set. RESULTS: The size of the solid component, the consolidation-to-tumor ratio, the solid component pleural contact length, the SUVmax, the density type, the pleural indentation, the spiculation, and the vascular convergence sign demonstrated significant differences between VPI-positive (n = 40) and VPI-negative (n = 58) cases on univariate analysis in the training set. A multivariate logistic regression model incorporated the SUVmax [odds ratio (OR): 1.753, P = 0.002], the solid component pleural contact length (OR: 1.101, P = 0.034), the pleural indentation (OR: 5.075, P = 0.041), and the vascular convergence sign (OR: 13.324, P = 0.025) as the best combination of predictors, which were all independent risk factors for VPI in the training group. The nomogram indicated promising discrimination, with an area under the curve value of 0.892 [95% confidence interval (CI), 0.813-0.946] in the training set and 0.885 (95% CI, 0.748-0.962) in the validation set. The calibration curve demonstrated that its predicted probabilities were in acceptable agreement with the actual probability. The decision curve analysis illustrated that the current nomogram would add more net benefit. CONCLUSION: The nomogram integrating the SUVmax and the CT features could non-invasively predict VPI status before surgery in subpleural clinical stage IA lung adenocarcinoma patients.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Fluorodesoxiglucosa F18 , Pleura/diagnóstico por imagen , Pleura/patología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/cirugía , Neoplasias Pulmonares/patología , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/cirugía , Adenocarcinoma/patología , Invasividad Neoplásica/patología , Adenocarcinoma del Pulmón/diagnóstico por imagen , Adenocarcinoma del Pulmón/cirugía , Adenocarcinoma del Pulmón/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X/métodos , Análisis Multivariante , Estudios Retrospectivos , Estadificación de Neoplasias
10.
Diagn Interv Radiol ; 29(6): 771-785, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37724737

RESUMEN

PURPOSE: To investigate the value of clinical characteristics and radiological features for predicting spread through air spaces (STAS) in patients with clinical stage IA non-small cell lung cancer (NSCLC). METHODS: A total of 336 patients with NSCLC from our hospital were randomly divided into two groups, i.e., the training cohort (n = 236) and the internal validation cohort (n = 100) (7:3 ratio). Furthermore, 69 patients from two other hospitals were collected as the external validation cohort. Eight clinical patient characteristics were recorded, and 20 tumor radiological features were quantitatively measured and qualitatively analyzed. In the training cohort, the differences in clinical characteristics and radiological features were compared using univariate and multivariate analysis. A nomogram was created, and the predictive efficacy of the model was evaluated in the validation cohorts. The receiver operating characteristic curve and area under the curve (AUC) value were used to evaluate the discriminative ability of the model. In addition, the Hosmer-Lemeshow test and calibration curve were used to evaluate the goodness-of-fit of the model, and the decision curve was used to analyze the model's clinical application value. RESULTS: The best predictors included gender, the carcinoembryonic antigen (CEA), consolidation-to-tumor ratio (CTR), density type, and distal ribbon sign. Among these, the tumor density type [odds ratio (OR): 6.738] and distal ribbon sign (OR: 5.141) were independent risk factors for predicting the STAS status. Moreover, three different STAS prediction models were constructed, i.e., a clinical, radiological, and combined model. The clinical model comprised gender and the CEA, the radiological model included the CTR, density type, and distal ribbon sign, and the combined model comprised the above two models. A DeLong test results revealed that the combined model was superior to the clinical model in all three cohorts and superior to the radiological model in the external validation cohort; the cohort AUC values were 0.874, 0.822, and 0.810, respectively. The results also showed that the combined model had the highest diagnostic efficacy among the models. The Hosmer-Lemeshow test showed that the combined model showed a good fit in all three cohorts, and the calibration curve showed that the predicted probability value of the combined model was in good agreement with the actual STAS status. Finally, the decision curve showed that the combined model had a better clinical application value than the clinical and radiological models. CONCLUSION: The nomogram created in this study, based on clinical characteristics and radiological features, has a high diagnostic efficiency for predicting the STAS status in patients with clinical stage IA NSCLC and may support the creation of personalized treatment strategies before surgery.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Antígeno Carcinoembrionario , Nomogramas , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/cirugía , Radiografía , Estudios Retrospectivos
11.
Diagn Interv Radiol ; 29(5): 691-703, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37559745

RESUMEN

PURPOSE: To assess the quantification accuracy of pulmonary nodules using virtual monoenergetic images (VMIs) derived from spectral-detector computed tomography (CT) under an ultra-low-dose scan protocol. METHODS: A chest phantom consisting of 12 pulmonary nodules was scanned using spectral-detector CT at 100 kVp/10 mAs, 100 kVp/20 mAs, 120 kVp/10 mAs, and 120 kVp/30 mAs. Each scanning protocol was repeated three times. Each CT scan was reconstructed utilizing filtered back projection, hybrid iterative reconstruction, iterative model reconstruction (IMR), and VMIs of 40-100 keV. The signal-to-noise ratio and air noise of images, absolute differences, and absolute percentage measurement errors (APEs) of the diameter, density, and volume of the four scan protocols and ten reconstruction images were compared. RESULTS: With each fixed reconstruction image, the four scanning protocols exhibited no significant differences in APEs for diameter and density (all P > 0.05). Of the four scan protocols and ten reconstruction images, APEs for nodule volume had no significant differences (all P > 0.05). At 100 kVp/10 mAs, APEs for density using IMR were the lowest (APE-mean: 6.69), but no significant difference was detected between VMIs at 50 keV (APE-mean: 11.69) and IMR (P = 0.666). In the subgroup analysis, at 100 kVp/10 mAs, there were no significant differences between VMIs at 50 keV and IMR in diameter and density (all P > 0.05). The radiation dose at 100 kVp/10 mAs was reduced by 77.8% compared with that at 120 kVp/30 mAs. CONCLUSION: Compared with IMR, reconstruction at 100 kVp/10 mAs and 50 keV provides a more accurate quantification of pulmonary nodules, and the radiation dose is reduced by 77.8% compared with that at 120 kVp/30 mAs, demonstrating great potential for ultra-low-dose spectral-detector CT.


Asunto(s)
Hominidae , Nódulos Pulmonares Múltiples , Humanos , Animales , Dosis de Radiación , Algoritmos , Tomografía Computarizada por Rayos X/métodos , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Fantasmas de Imagen
12.
Int J Chron Obstruct Pulmon Dis ; 18: 1169-1185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332841

RESUMEN

Purpose: This study aimed to screen out computed tomography (CT) morphological features and clinical characteristics of patients with lung cancer to identify chronic obstructive pulmonary disease (COPD). Further, we aimed to develop and validate different diagnostic nomograms for predicting whether lung cancer is comorbid with COPD. Patients and Methods: This retrospective study examined data from 498 patients with lung cancer (280 with COPD, 218 without COPD; 349 in training cohort, 149 in validation cohort) from two centers. Five clinical characteristics and 20 CT morphological features were evaluated. Differences in all variables were assessed between COPD and non-COPD groups. Models were developed using multivariable logistic regression to identify COPD, including clinical, imaging, and combined nomograms. Receiver operating characteristic curves were used to evaluate and compare the performance of nomograms. Results: Age, sex, interface, bronchus cutoff sign, spine-like process, and spiculation sign were independent predictors of COPD in patients with lung cancer. In the training and validation cohorts, the clinical nomogram showed good performance to predict COPD in lung cancer patients (areas under the curves [AUCs] of 0.807 [95% CI, 0.761-0.854] and 0.753 [95% CI, 0.674-0.832]); while the imaging nomogram showed slightly better performance (AUCs of 0.814 [95% CI, 0.770-0.858] and 0.780 [95% CI, 0.705-0.856]). For the combined nomogram generated with clinical and imaging features, the performance was further improved (AUC=0.863 [95% CI, 0.824-0.903], 0.811 [95% CI, 0.742-0.880] in the training and validation cohort). At 60% risk threshold, there were more true negative predictions (48 vs 44) and higher accuracy (73.15% vs 71.14%) for the combined nomogram compared with the clinical nomogram in the validation cohort. Conclusion: The combined nomogram developed with clinical and imaging features outperformed clinical and imaging nomograms; this provides a convenient method to detect COPD in patients with lung cancer using one-stop CT scanning.


Asunto(s)
Neoplasias Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Nomogramas , Estudios Retrospectivos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
13.
J Thorac Imaging ; 38(5): 304-314, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423615

RESUMEN

PURPOSE: Reliable prediction of volume doubling time (VDT) is essential for the personalized management of pulmonary ground-glass nodules (GGNs). We aimed to determine the optimal VDT prediction method by comparing different machine learning methods only based on the baseline chest computed tomography (CT) images. MATERIALS AND METHODS: Seven classical machine learning methods were evaluated in terms of their stability and performance for VDT prediction. The VDT, calculated by the preoperative and baseline CT, was divided into 2 groups with a cutoff value of 400 days. A total of 90 GGNs from 3 hospitals constituted the training set, and 86 GGNs from the fourth hospital served as the external validation set. The training set was used for feature selection and model training, and the validation set was used to evaluate the predictive performance of the model independently. RESULTS: The eXtreme Gradient Boosting showed the highest predictive performance (accuracy: 0.890±0.128 and area under the ROC curve (AUC): 0.896±0.134), followed by the neural network (NNet) (accuracy: 0.865±0.103 and AUC: 0.886±0.097). While regarding stability, the NNet showed the highest robustness against data perturbation (relative SDs [%] of mean AUC: 10.9%). Therefore, the NNet was chosen as the final model, achieving high accuracy of 0.756 in the external validation set. CONCLUSION: The NNet is a promising machine learning method to predict the VDT of GGNs, which would assist in the personalized follow-up and treatment strategies for GGNs reducing unnecessary follow-up and radiation dose.


Asunto(s)
Neoplasias Pulmonares , Nódulos Pulmonares Múltiples , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/cirugía , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Aprendizaje Automático , Redes Neurales de la Computación , Estudios Retrospectivos
14.
Acad Radiol ; 30(12): 2894-2903, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37062629

RESUMEN

RATIONALE AND OBJECTIVES: To develop and validate a model for predicting chronic obstructive pulmonary disease (COPD) in patients with lung cancer based on computed tomography (CT) radiomic signatures and clinical and imaging features. MATERIALS AND METHODS: We retrospectively enrolled 443 patients with lung cancer who underwent pulmonary function test as the primary cohort. They were randomly assigned to the training (n = 311) or validation (n = 132) set in a 7:3 ratio. Additionally, an independent external cohort of 54 patients was evaluated. The radiomic lung nodule signature was constructed using the least absolute shrinkage and selection operator algorithm, while key variables were selected using logistic regression to develop the clinical and combined models presented as a nomogram. RESULTS: COPD was significantly related to the radiomics signature in both cohorts. Moreover, the signature served as an independent predictor of COPD in the multivariate regression analysis. For the training, internal, and external cohorts, the area under the receiver operating characteristic curve (ROC, AUC) values of our radiomics signature for COPD prediction were 0.85, 0.85, and 0.76, respectively. Additionally, the AUC values of the radiomic nomogram for COPD prediction were 0.927, 0.879, and 0.762 for the three cohorts, respectively, which outperformed the other two models. CONCLUSION: The present study presents a nomogram that incorporates radiomics signatures and clinical and radiological features, which could be used to predict the risk of COPD in patients with lung cancer with one-stop chest CT scanning.


Asunto(s)
Neoplasias Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Nomogramas , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen
15.
Front Oncol ; 13: 1255007, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664069

RESUMEN

Objective: To develop and validate the model for predicting benign and malignant ground-glass nodules (GGNs) based on the whole-lung baseline CT features deriving from deep learning and radiomics. Methods: This retrospective study included 385 GGNs from 3 hospitals, confirmed by pathology. We used 239 GGNs from Hospital 1 as the training and internal validation set; 115 and 31 GGNs from Hospital 2 and Hospital 3 as the external test sets 1 and 2, respectively. An additional 32 stable GGNs from Hospital 3 with more than five years of follow-up were used as the external test set 3. We evaluated clinical and morphological features of GGNs at baseline chest CT and extracted the whole-lung radiomics features simultaneously. Besides, baseline whole-lung CT image features are further assisted and extracted using the convolutional neural network. We used the back-propagation neural network to construct five prediction models based on different collocations of the features used for training. The area under the receiver operator characteristic curve (AUC) was used to compare the prediction performance among the five models. The Delong test was used to compare the differences in AUC between models pairwise. Results: The model integrated clinical-morphological features, whole-lung radiomic features, and whole-lung image features (CMRI) performed best among the five models, and achieved the highest AUC in the internal validation set, external test set 1, and external test set 2, which were 0.886 (95% CI: 0.841-0.921), 0.830 (95%CI: 0.749-0.893) and 0.879 (95%CI: 0.712-0.968), respectively. In the above three sets, the differences in AUC between the CMRI model and other models were significant (all P < 0.05). Moreover, the accuracy of the CMRI model in the external test set 3 was 96.88%. Conclusion: The baseline whole-lung CT features were feasible to predict the benign and malignant of GGNs, which is helpful for more refined management of GGNs.

16.
J Thorac Imaging ; 37(6): 366-373, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35980382

RESUMEN

Thoracic imaging has been revolutionized through advances in technology and research around the world, and so has China. Thoracic imaging in China has progressed from anatomic observation to quantitative and functional evaluation, from using traditional approaches to using artificial intelligence. This article will review the past, present, and future of thoracic imaging in China, in an attempt to establish new accepted strategies moving forward.


Asunto(s)
Inteligencia Artificial , Humanos , China
17.
Front Oncol ; 12: 892890, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35747810

RESUMEN

Objective: This study aimed to develop effective artificial intelligence (AI) diagnostic models based on CT images of pulmonary nodules only, on descriptional and quantitative clinical or image features, or on a combination of both to differentiate benign and malignant ground-glass nodules (GGNs) to assist in the determination of surgical intervention. Methods: Our study included a total of 867 nodules (benign nodules: 112; malignant nodules: 755) with postoperative pathological diagnoses from two centers. For the diagnostic models to discriminate between benign and malignant GGNs, we adopted three different artificial intelligence (AI) approaches: a) an image-based deep learning approach to build a deep neural network (DNN); b) a clinical feature-based machine learning approach based on the clinical and image features of nodules; c) a fusion diagnostic model integrating the original images and the clinical and image features. The performance of the models was evaluated on an internal test dataset (the "Changzheng Dataset") and an independent test dataset collected from an external institute (the "Longyan Dataset"). In addition, the performance of automatic diagnostic models was compared with that of manual evaluations by two radiologists on the 'Longyan dataset'. Results: The image-based deep learning model achieved an appealing diagnostic performance, yielding AUC values of 0.75 (95% confidence interval [CI]: 0.62, 0.89) and 0.76 (95% CI: 0.61, 0.90), respectively, on both the Changzheng and Longyan datasets. The clinical feature-based machine learning model performed well on the Changzheng dataset (AUC, 0.80 [95% CI: 0.64, 0.96]), whereas it performed poorly on the Longyan dataset (AUC, 0.62 [95% CI: 0.42, 0.83]). The fusion diagnostic model achieved the best performance on both the Changzheng dataset (AUC, 0.82 [95% CI: 0.71-0.93]) and the Longyan dataset (AUC, 0.83 [95% CI: 0.70-0.96]), and it achieved a better specificity (0.69) than the radiologists (0.33-0.44) on the Longyan dataset. Conclusion: The deep learning models, including both the image-based deep learning model and the fusion model, have the ability to assist radiologists in differentiating between benign and malignant nodules for the precise management of patients with GGNs.

18.
Int J Chron Obstruct Pulmon Dis ; 17: 2471-2483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36217330

RESUMEN

Purpose: To explore optimal threshold of FEV1% predicted value (FEV1%pre) for high-risk chronic obstructive pulmonary disease (COPD) using the parameter response mapping (PRM) based on machine learning classification model. Patients and Methods: A total of 561 consecutive non-COPD subjects who were screened for chest diseases in our hospital between August and October 2018 and who had complete questionnaire surveys, pulmonary function tests (PFT), and paired respiratory chest CT scans were enrolled retrospectively. The CT quantitative parameter for small airway remodeling was PRM, and 72 parameters were obtained at the levels of whole lung, left and right lung, and five lobes. To identify a more reasonable thresholds of FEV1% predicted value for distinguishing high-risk COPD patients from the normal, 80 thresholds from 50% to 129% were taken with a partition of 1% to establish a random forest classification model under each threshold, such that novel PFT-parameter-based high-risk criteria would be more consistent with the PRM-based machine learning classification model. Results: Machine learning-based PRM showed that consistency between PRM parameters and PFT was better able to distinguish high-risk COPD from the normal, with an AUC of 0.84 when the threshold was 72%. When the threshold was 80%, the AUC was 0.72 and when the threshold was 95%, the AUC was 0.64. Conclusion: Machine learning-based PRM is feasible for redefining high-risk COPD, and setting the optimal FEV1% predicted value lays the foundation for redefining high-risk COPD diagnosis.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Pulmón/diagnóstico por imagen , Aprendizaje Automático , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Pruebas de Función Respiratoria , Estudios Retrospectivos
19.
IEEE Trans Neural Netw Learn Syst ; 32(1): 49-62, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32149657

RESUMEN

Open-domain dialog generation, which is a crucial component of artificial intelligence, is an essential and challenging problem. In this article, we present a personalized dialog system, which leverages the advantages of multitask learning and reinforcement learning for personalized dialogue generation (MRPDG). Specifically, MRPDG consists of two subtasks: 1) an author profiling module that recognizes user characteristics from the input sentence (auxiliary task) and 2) a personalized dialog generation system that generates informative, grammatical, and coherent responses with reinforcement learning algorithms (primary task). Three kinds of rewards are proposed to generate high-quality conversations. We investigate the effectiveness of three widely used reinforcement learning methods [i.e., Q-learning, policy gradient, and actor-critic (AC) algorithm] in a personalized dialog generation system and demonstrate that the AC algorithm achieves the best results on the underlying framework. Comprehensive experiments are conducted to evaluate the performance of the proposed model on two real-life data sets. Experimental results illustrate that MRPDG is able to produce high-quality personalized dialogs for users with different characteristics. Quantitatively, the proposed model can achieve better performance than the compared methods across different evaluation metrics, such as the human evaluation, BiLingual Evaluation Understudy (BLEU), and perplexity.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Refuerzo en Psicología , Algoritmos , Bases de Datos Factuales , Humanos , Lenguaje , Redes Neurales de la Computación
20.
J Thorac Dis ; 13(3): 1327-1337, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33841926

RESUMEN

BACKGROUND: The peri-tumor microenvironment plays an important role in the occurrence, growth and metastasis of cancer. The aim of this study is to explore the value and application of a CT image-based deep learning model of tumors and peri-tumors in predicting the invasiveness of ground-glass nodules (GGNs). METHODS: Preoperative thin-section chest CT images were reviewed retrospectively in 622 patients with a total of 687 pulmonary GGNs. GGNs are classified according to clinical management strategies as invasive lesions (IAC) and non-invasive lesions (AAH, AIS and MIA). The two volumes of interest (VOIs) identified on CT were the gross tumor volume (GTV) and the gross volume of tumor incorporating peritumoral region (GPTV). Three dimensional (3D) DenseNet was used to model and predict GGN invasiveness, and five-fold cross validation was performed. We used GTV and GPTV as inputs for the comparison model. Prediction performance was evaluated by sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). RESULTS: The GTV-based model was able to successfully predict GGN invasiveness, with an AUC of 0.921 (95% CI, 0.896-0.937). Using GPTV, the AUC of the model increased to 0.955 (95% CI, 0.939-0.971). CONCLUSIONS: The deep learning method performed well in predicting GGN invasiveness. The predictive ability of the GPTV-based model was more effective than that of the GTV-based model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA