Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Cancer ; 21(1): 125, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35681235

RESUMEN

BACKGROUND: The dynamic epigenome and proteins specialized in the interpretation of epigenetic marks critically contribute to leukemic pathogenesis but also offer alternative therapeutic avenues. Targeting newly discovered chromatin readers involved in leukemogenesis may thus provide new anticancer strategies. Accumulating evidence suggests that the PRC1 complex member CBX2 is overexpressed in solid tumors and promotes cancer cell survival. However, its role in leukemia is still unclear. METHODS: We exploited reverse genetic approaches to investigate the role of CBX2 in human leukemic cell lines and ex vivo samples. We also analyzed phenotypic effects following CBX2 silencing using cellular and molecular assays and related functional mechanisms by ATAC-seq and RNA-seq. We then performed bioinformatic analysis of ChIP-seq data to explore the influence of histone modifications in CBX2-mediated open chromatin sites. Lastly, we used molecular assays to determine the contribution of CBX2-regulated pathways to leukemic phenotype. RESULTS: We found CBX2 overexpressed in leukemia both in vitro and ex vivo samples compared to CD34+ cells. Decreased CBX2 RNA levels prompted a robust reduction in cell proliferation and induction of apoptosis. Similarly, sensitivity to CBX2 silencing was observed in primary acute myeloid leukemia samples. CBX2 suppression increased genome-wide chromatin accessibility followed by alteration of leukemic cell transcriptional programs, resulting in enrichment of cell death pathways and downregulation of survival genes. Intriguingly, CBX2 silencing induced epigenetic reprogramming at p38 MAPK-associated regulatory sites with consequent deregulation of gene expression. CONCLUSIONS: Our results identify CBX2 as a crucial player in leukemia progression and highlight a potential druggable CBX2-p38 MAPK network in AML.


Asunto(s)
Cromatina , Leucemia Mieloide Aguda , Complejo Represivo Polycomb 1 , Cromatina/genética , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34502288

RESUMEN

Thyroid hormone levels are usually genetically determined. Thyrocytes produce a unique set of enzymes that are dedicated to thyroid hormone synthesis. While thyroid transcriptional regulation is well-characterized, post-transcriptional mechanisms have been less investigated. Here, we describe the involvement of ZFP36L2, a protein that stimulates degradation of target mRNAs, in thyroid development and function, by in vivo and in vitro gene targeting in thyrocytes. Thyroid-specific Zfp36l2-/- females were hypothyroid, with reduced levels of circulating free Thyroxine (cfT4) and Triiodothyronine (cfT3). Their hypothyroidism was due to dyshormonogenesis, already evident one week after weaning, while thyroid development appeared normal. We observed decreases in several thyroid-specific transcripts and proteins, such as Nis and its transcriptional regulators (Pax8 and Nkx2.1), and increased apoptosis in Zfp36l2-/- thyroids. Nis, Pax8, and Nkx2.1 mRNAs were also reduced in Zfp36l2 knock-out thyrocytes in vitro (L2KO), in which we confirmed the increased apoptosis. Finally, in L2KO cells, we showed an altered response to TSH stimulation regarding both thyroid-specific gene expression and cell proliferation and survival. This result was supported by increases in P21/WAF1 and p-P38MAPK levels. Mechanistically, we confirmed Notch1 as a target of ZFP36L2 in the thyroid since its levels were increased in both in vitro and in vivo models. In both models, the levels of Id4 mRNA, a potential inhibitor of Pax8 activity, were increased. Overall, the data indicate that the regulation of mRNA stability by ZFP36L2 is a mechanism that controls the function and survival of thyrocytes.


Asunto(s)
Glándula Tiroides/fisiología , Tristetraprolina/fisiología , Animales , Apoptosis/fisiología , Línea Celular , Supervivencia Celular , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Ratones Endogámicos C57BL , Ratones Mutantes , Factor de Transcripción PAX8/genética , Ratas , Receptor Notch1/metabolismo , Glándula Tiroides/citología , Glándula Tiroides/efectos de los fármacos , Tirotropina/farmacología , Tristetraprolina/genética
3.
Clin Epigenetics ; 14(1): 182, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36539894

RESUMEN

Chromatin structural organization, gene expression and proteostasis are intricately regulated in a wide range of biological processes, both physiological and pathological. Protein acetylation, a major post-translational modification, is tightly involved in interconnected biological networks, modulating the activation of gene transcription and protein action in cells. A very large number of studies describe the pivotal role of the so-called acetylome (accounting for more than 80% of the human proteome) in orchestrating different pathways in response to stimuli and triggering severe diseases, including cancer. NAA60/NatF (N-terminal acetyltransferase F), also named HAT4 (histone acetyltransferase type B protein 4), is a newly discovered acetyltransferase in humans modifying N-termini of transmembrane proteins starting with M-K/M-A/M-V/M-M residues and is also thought to modify lysine residues of histone H4. Because of its enzymatic features and unusual cell localization on the Golgi membrane, NAA60 is an intriguing acetyltransferase that warrants biochemical and clinical investigation. Although it is still poorly studied, this review summarizes current findings concerning the structural hallmarks and biological role of this novel targetable epigenetic enzyme.


Asunto(s)
Acetiltransferasas , Metilación de ADN , Humanos , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Aparato de Golgi/metabolismo , Histonas/metabolismo , Cromatina/metabolismo , Acetilación , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA