Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(21): e2308369, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38102095

RESUMEN

Industrial processing of quartz (SiO2) and quartz-containing materials produces toxic dust. Fracturing quartz crystals opens the Si‒O bond and produces highly reactive surface species which mainly react with molecules like water and oxygen. This surface-reconstruction process forms silanol (Si‒OH) on the quartz surface, which can damage biological membranes under specific configurations. To comprehend the impact of the quartz surface restructuring on membranolytic activity, the formation and reactivity of quartz radicals produced in four distinct molecular environments with electron paramagnetic resonance (EPR) spectroscopy are evaluated and their membranolytic activity is measured through in vitro hemolysis test. The four molecular environments are formulated with and without molecular water vapor and oxygen (±H2O/±O2). The absence of water favored the formation of surface radical species. In water-rich environments, diamagnetic species prevailed due to radical recombination. Quartz milled in -H2O/±O2 acquired membranolytic activity when exposed to water vapor, unlike quartz milled in +H2O/±O2. After being stabilized by reaction with water vapor, the membranolytic activity of quartz is maintained over time. It is demonstrated that the type and the reactivity of radical sites on quartz are modulated by the outer molecular environment, ultimately determining the biological activity of milled quartz dust.

2.
Soft Matter ; 20(9): 2060-2074, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38345308

RESUMEN

We study wetting droplets formed of active Brownian particles in contact with a repulsive potential barrier, in a wedge geometry. Our numerical results demonstrate a transition between partially wet and completely wet states, as a function of the barrier height, analogous to the corresponding surface phase transition in passive fluids. We analyse partially wet configurations characterised by a nonzero contact angle θ between the droplet surface and the barrier including the average density profile and its fluctuations. These findings are compared with two equilibrium systems: a Lennard-Jones fluid and a simple contour model for a liquid-vapour interface. We locate the wetting transition where cos(θ) = 1, and the neutral state where cos(θ) = 0. We discuss the implications of these results for possible definitions of surface tensions in active fluids.

3.
J Chem Phys ; 160(16)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38651807

RESUMEN

Measurements of local density fluctuations are crucial to characterizing the interfacial properties of equilibrium fluids. A specific case that has been well-explored involves the heightened compressibility of water near hydrophobic entities. Commonly, a spatial profile of local fluctuation strength is constructed from the measurements of the mean and variance of solvent particle number fluctuations in a set of contiguous subvolumes of the system adjacent to the solvo-/hydrophobe. An alternative measure proposed by Evans and Stewart [J. Phys.: Condens. Matter 27, 194111 (2015)] defines a local compressibility profile in terms of the chemical potential derivative of the spatial number density profile. Using Grand canonical Monte Carlo simulation, we compare and contrast the efficacy of these two approaches for a Lennard-Jones solvent at spherical and planar solvophobic interfaces and SPC/E water at a hydrophobic spherical solute. Our principal findings are as follows: (i) the local compressibility profile χ(r) of Evans and Stewart is considerably more sensitive to variations in the strength of local density fluctuations than the spatial fluctuation profile F(r) and can resolve much more detailed structure; and (ii) while the local compressibility profile is essentially independent of the choice of spatial discretization used to construct the profile, the spatial fluctuation profile exhibits a strong systematic dependence on the size of the subvolumes on which the profile is defined. We clarify the origin and nature of this finite-size effect.

4.
PLoS Comput Biol ; 18(1): e1009394, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35025883

RESUMEN

Collective behaviour in living systems is observed across many scales, from bacteria to insects, to fish shoals. Zebrafish have emerged as a model system amenable to laboratory study. Here we report a three-dimensional study of the collective dynamics of fifty zebrafish. We observed the emergence of collective behaviour changing between ordered to randomised, upon adaptation to new environmental conditions. We quantify the spatial and temporal correlation functions of the fish and identify two length scales, the persistence length and the nearest neighbour distance, that capture the essence of the behavioural changes. The ratio of the two length scales correlates robustly with the polarisation of collective motion that we explain with a reductionist model of self-propelled particles with alignment interactions.


Asunto(s)
Conducta Animal/fisiología , Modelos Biológicos , Conducta Espacial/fisiología , Pez Cebra/fisiología , Animales , Biología Computacional , Imagenología Tridimensional , Natación/fisiología
5.
Environ Res ; 230: 115046, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36525994

RESUMEN

Exposure to asbestos and asbestos-like minerals has been related to the development of severe lung diseases, including cancer and malignant mesothelioma (MM). A high incidence of non-occupational MM was observed in New Caledonia (France) in people living in proximity of serpentinite outcrops, containing chrysotile and fibrous antigorite. Antigorite is a magnesium silicate, which shares with chrysotile asbestos the chemical formula. To achieve information on antigorite toxicity, we investigated the physico-minero-chemical features relevant for toxicity and cellular effects elicited on murine macrophages (MH-S) and alveolar epithelial cells (A549) of three fibrous antigorites (f-Atg) collected in a Caledonian nickel lateritic ore and subjected to supergene alteration. Field Atg were milled to obtain samples suitable for toxicological studies with a similar particle size distribution. UICC chrysotile (Ctl) and a non-fibrous antigorite (nf-Atg) were used as reference minerals. A high variability in toxicity was observed depending on shape, chemical alteration, and surface reactivity. The antigorites shared with Ctl a similar surface area (16.3, 12.1, 20.3, 13.4, and 15.6 m2/g for f-Atg1, 2, 3, nf-Atg, and Ctl). f-Atg showed different level of pedogenetic weathering (Ni depletion f-Atg1 ≪ f-Atg2 and 3) and contained about 50% of elongated mineral particles, some of which exhibited high aspect ratios (AR > 10 µm, 20%, 26%, 31% for f-Atg1, 2, and 3, respectively). The minerals differed in bio-accessible iron at pH 4.5 (f-Atg1 ≪ f-Atg3, < f-Atg2, nf-Atg < Ctl), and surface reactivity (ROS release in solution, f-Atg1 ≪ f-Atg2, 3, nf-Atg, and Ctl). f-Atg2 and f-Atg3 induced oxidative stress and pro-inflammatory responses, while the less altered, poorly reactive sample (f-Atg1) induced negligible effects, as well nf-Atg. The slow dissolution kinetics observed in simulated body fluids may signal a high biopersistence. Overall, our work revealed a significative cellular toxicity of f-Atg that correlates with fibrous habit and surface reactivity.


Asunto(s)
Asbestos Serpentinas , Amianto , Humanos , Ratones , Animales , Asbestos Serpentinas/toxicidad , Nueva Caledonia , Amianto/toxicidad , Minerales/toxicidad , Silicatos
6.
Environ Res ; 230: 115607, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36965793

RESUMEN

This paper summarizes recent insights into causal biological mechanisms underlying the carcinogenicity of asbestos. It addresses their implications for the shapes of exposure-response curves and considers recent epidemiologic trends in malignant mesotheliomas (MMs) and lung fiber burden studies. Since the commercial amphiboles crocidolite and amosite pose the highest risk of MMs and contain high levels of iron, endogenous and exogenous pathways of iron injury and repair are discussed. Some practical implications of recent developments are that: (1) Asbestos-cancer exposure-response relationships should be expected to have non-zero background rates; (2) Evidence from inflammation biology and other sources suggests that there are exposure concentration thresholds below which exposures do not increase inflammasome-mediated inflammation or resulting inflammation-mediated cancer risks above background risk rates; and (3) The size of the suggested exposure concentration threshold depends on both the detailed time patterns of exposure on a time scale of hours to days and also on the composition of asbestos fibers in terms of their physiochemical properties. These conclusions are supported by complementary strands of evidence including biomathematical modeling, cell biology and biochemistry of asbestos-cell interactions in vitro and in vivo, lung fiber burden analyses and epidemiology showing trends in human exposures and MM rates.


Asunto(s)
Amianto , Neoplasias Pulmonares , Mesotelioma , Humanos , Amianto/toxicidad , Mesotelioma/inducido químicamente , Mesotelioma/epidemiología , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/epidemiología , Pulmón/patología , Asbestos Anfíboles/toxicidad , Inflamación/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(45): 27836-27846, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33097669

RESUMEN

Inhalation of silica particles can induce inflammatory lung reactions that lead to silicosis and/or lung cancer when the particles are biopersistent. This toxic activity of silica dusts is extremely variable depending on their source and preparation methods. The exact molecular moiety that explains and predicts this variable toxicity of silica remains elusive. Here, we have identified a unique subfamily of silanols as the major determinant of silica particle toxicity. This population of "nearly free silanols" (NFS) appears on the surface of quartz particles upon fracture and can be modulated by thermal treatments. Density functional theory calculations indicates that NFS locate at an intersilanol distance of 4.00 to 6.00 Å and form weak mutual interactions. Thus, NFS could act as an energetically favorable moiety at the surface of silica for establishing interactions with cell membrane components to initiate toxicity. With ad hoc prepared model quartz particles enriched or depleted in NFS, we demonstrate that NFS drive toxicity, including membranolysis, in vitro proinflammatory activity, and lung inflammation. The toxic activity of NFS is confirmed with pyrogenic and vitreous amorphous silica particles, and industrial quartz samples with noncontrolled surfaces. Our results identify the missing key molecular moieties of the silica surface that initiate interactions with cell membranes, leading to pathological outcomes. NFS may explain other important interfacial processes involving silica particles.


Asunto(s)
Silanos/química , Dióxido de Silicio/química , Dióxido de Silicio/toxicidad , Membrana Celular , Cristalización , Polvo , Tamaño de la Partícula , Cuarzo/química , Cuarzo/toxicidad , Propiedades de Superficie
8.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37511241

RESUMEN

The study of molecular recognition patterns is crucial for understanding the interactions between inorganic (nano)particles and biomolecules. In this review we focus on hydroxyls (OH) exposed at the surface of oxide particles (OxPs) which can play a key role in molecular initiating events leading to OxPs toxicity. We discuss here the main analytical methods available to characterize surface OH from a quantitative and qualitative point of view, covering thermogravimetry, titration, ζ potential measurements, and spectroscopic approaches (NMR, XPS). The importance of modelling techniques (MD, DFT) for an atomistic description of the interactions between membranes/proteins and OxPs surfaces is also discussed. From this background, we distilled a new approach methodology (NAM) based on the combination of IR spectroscopy and bioanalytical assays to investigate the molecular interactions of OxPs with biomolecules and membranes. This NAM has been already successfully applied to SiO2 particles to identify the OH patterns responsible for the OxPs' toxicity and can be conceivably extended to other surface-hydroxylated oxides.


Asunto(s)
Óxidos , Dióxido de Silicio , Óxidos/química , Dióxido de Silicio/química
9.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37894824

RESUMEN

While exposure to long amphibolic asbestos fibers (L > 10 µm) results in the development of severe diseases including inflammation, fibrosis, and mesothelioma, the pathogenic activity associated with short fibers (L < 5 µm) is less clear. By exposing murine macrophages to short (SFA) or long (LFA) fibers of amosite asbestos different in size and surface chemistry, we observed that SFA internalization resulted in pyroptotic-related immunogenic cell death (ICD) characterized by the release of the pro-inflammatory damage signal (DAMP) IL-1α after inflammasome activation and gasdermin D (GSDMD)-pore formation. In contrast, macrophage responses to non-internalizable LFA were associated with tumor necrosis factor alpha (TNF-α) release, caspase-3 and -7 activation, and apoptosis. SFA effects exclusively resulted from Toll-like receptor 4 (TLR4), a pattern-recognition receptor (PRR) recognized for its ability to sense particles, while the response to LFA was elicited by a multifactorial ignition system involving the macrophage receptor with collagenous structure (SR-A6 or MARCO), reactive oxygen species (ROS) cascade, and TLR4. Our findings indicate that asbestos fiber size and surface features play major roles in modulating ICD and inflammatory pathways. They also suggest that SFA are biologically reactive in vitro and, therefore, their inflammatory and toxic effects in vivo should not be underestimated.


Asunto(s)
Asbesto Amosita , Amianto , Ratones , Animales , Asbesto Amosita/toxicidad , Receptor Toll-Like 4 , Macrófagos , Amianto/toxicidad , Apoptosis
10.
Chem Res Toxicol ; 35(12): 2335-2347, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36410050

RESUMEN

Chrysotile asbestos is a carcinogenic mineral that has abundantly been used in industrial and consumer applications. The carcinogenicity of the fibers is partly governed by reactive Fe surface sites that catalyze the generation of highly toxic hydroxyl radicals (HO•) from extracellular hydrogen peroxide (H2O2). Chrysotile also contains Cr, typically in the low mass permille range. In this study, we examined the leaching of Cr from fibers at the physiological lung pH of 7.4 in the presence and absence of H2O2. Furthermore, we investigated the potential of cells from typical asbestos-burdened tissues and cancers to take up Cr leached from chrysotile in PCR expression, immunoblot, and cellular Cr uptake experiments. Finally, the contribution of Cr to fiber-mediated H2O2 decomposition and HO• generation was studied. Chromium readily dissolved from chrysotile fibers in its genotoxic and carcinogenic hexavalent redox state upon oxidation by H2O2. Lung epithelial, mesothelial, lung carcinoma, and mesothelioma cells expressed membrane-bound Cr(VI) transporters and accumulated Cr up to 10-fold relative to the Cr(VI) concentration in the spiked medium. Conversely, anion transporter inhibitors decreased cellular Cr(VI) uptake up to 45-fold. Finally, chromium associated with chrysotile neither decomposed H2O2 nor contributed to fiber-mediated HO• generation. Altogether, our results support the hypothesis that Cr may leach from inhaled chrysotile in its hexavalent state and subsequently accumulate in cells of typically asbestos-burdened tissues, which could contribute to the carcinogenicity of chrysotile fibers. However, unlike Fe, Cr did not significantly contribute to the adverse radical production of chrysotile.


Asunto(s)
Amianto , Neoplasias Pulmonares , Humanos , Asbestos Serpentinas/toxicidad , Asbestos Serpentinas/química , Peróxido de Hidrógeno , Cromo/toxicidad , Carcinógenos/análisis , Neoplasias Pulmonares/inducido químicamente
11.
J Chem Phys ; 156(21): 214907, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35676121

RESUMEN

Colloidal dispersions are prized as model systems to understand the basic properties of materials and are central to a wide range of industries from cosmetics to foods to agrichemicals. Among the key developments in using colloids to address challenges in condensed matter is to resolve the particle coordinates in 3D, allowing a level of analysis usually only possible in computer simulations. However, in amorphous materials, relating mechanical properties to microscopic structure remains problematic. This makes it rather hard to understand, for example, mechanical failure. Here, we address this challenge by studying the contacts and the forces between particles as well as their positions. To do so, we use a colloidal model system (an emulsion) in which the interparticle forces and local stress can be linked to the microscopic structure. We demonstrate the potential of our method to reveal insights into the failure mechanisms of soft amorphous solids by determining local stress in a colloidal gel. In particular, we identify "force chains" of load-bearing droplets and local stress anisotropy and investigate their connection with locally rigid packings of the droplets.


Asunto(s)
Coloides , Fenómenos Mecánicos , Anisotropía , Coloides/química , Simulación por Computador , Geles
12.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499757

RESUMEN

Occupational exposure to quartz dust is associated with fatal diseases. Quartz dusts generated by mechanical fracturing are characterized by a broad range of micrometric to nanometric particles. The contribution of this nanometric fraction to the overall toxicity of quartz is still largely unexplored, primarily because of the strong electrostatic adhesion forces that prevent isolation of the nanofraction. Furthermore, fractured silica dust exhibits special surface features, namely nearly free silanols (NFS), which impart a membranolytic activity to quartz. Nanoquartz can be synthetized via bottom-up methods, but the surface chemistry of such crystals strongly differs from that of nanoparticles resulting from fracturing. Here, we report a top-down milling procedure to obtain a nanometric quartz that shares the key surface properties relevant to toxicity with fractured quartz. The ball milling was optimized by coupling the dry and wet milling steps, using water as a dispersing agent, and varying the milling times and rotational speeds. Nanoquartz with a strong tendency to form submicrometric agglomerates was obtained. The deagglomeration with surfactants or simulated body fluids was negligible. Partial lattice amorphization and a bimodal crystallite domain size were observed. A moderate membranolytic activity, which correlated with the number of NFS, signaled coherence with the previous toxicological data. A membranolytic nanoquartz for toxicological investigations was obtained.


Asunto(s)
Exposición Profesional , Cuarzo , Cuarzo/química , Polvo , Silanos , Dióxido de Silicio/química
13.
Phys Rev Lett ; 126(3): 038002, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33543975

RESUMEN

Simulation studies of the phase diagram of repulsive active Brownian particles in three dimensions reveal that the region of motility-induced phase separation between a high and low density phase is enclosed by a region of gas-crystal phase separation. Near-critical loci and structural crossovers can additionally be identified in analogy with simple fluids. Motivated by the striking similarity to the behavior of equilibrium fluids with short-ranged pairwise attractions, we show that a direct mapping to pair potentials in the dilute limit implies interactions that are insufficiently attractive to engender phase separation. Instead, this is driven by the emergence of multibody effects associated with particle caging that occurs at sufficiently high number density. We quantify these effects via information-theoretical measures of n-body effective interactions extracted from the configurational structure.

14.
Phys Rev Lett ; 127(23): 238002, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34936774

RESUMEN

We study nonequilibrium analogues of surface phase transitions in a minimal model of active particles in contact with a purely repulsive potential barrier that mimics a thin porous membrane. Under conditions of bulk motility-induced phase separation, the interaction strength ϵ_{w} of the barrier controls the affinity of the dense phase for the barrier region. We uncover clear signatures of a wetting phase transition as ϵ_{w} is varied. In common with its equilibrium counterpart, the character of this transition depends on the system dimensionality: a continuous transition with large density fluctuations and gas bubbles is uncovered in 2D while 3D systems exhibit a sharp transition absent of large correlations.

15.
Chem Res Toxicol ; 34(3): 733-742, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33459025

RESUMEN

Anatase titanium dioxide nanoparticles (TiO2 NPs) are used in a large range of industrial applications mainly due to their photocatalytic properties. Before entering the lung, virtually all TiO2 NPs are exposed to some UV light, and lung toxicity of TiO2 NPs might be influenced by photoexcitation that is known to alter TiO2 surface properties. Although the TiO2 NPs toxicity has been extensively investigated, limited data are available regarding the toxicity of TiO2 NPs that have been pre-exposed to UV light, and their impact on humans remains unknown. In this study, five types of TiO2NPs with tailored physicochemical features were characterized and irradiated by UV for 30 min. Following irradiation, cytotoxicity, pro-inflammatory response, and oxidative stress on a human lung coculture system (A549 epithelial cells and macrophages differentiated from THP-1 cells) were assessed. The surface charge of all samples was less negative after UV irradiation of TiO2 NPs, and the average aggregate size was slightly increased. A higher cytotoxic effect was observed for preirradiated TiO2 NPs compared to nonirradiated samples. Preirradiation of TiO2 NPs had no significant impact on the pro-inflammatory response and oxidative stress as shown by a similar production of IL-8, TNF-α, and reactive oxygen species.


Asunto(s)
Nanopartículas/química , Titanio/farmacología , Células A549 , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Interleucina-8/análisis , Interleucina-8/biosíntesis , Tamaño de la Partícula , Especies Reactivas de Oxígeno/análisis , Titanio/química , Células Tumorales Cultivadas , Factor de Necrosis Tumoral alfa/análisis , Factor de Necrosis Tumoral alfa/biosíntesis , Rayos Ultravioleta
16.
Phys Rev Lett ; 124(14): 145501, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32338984

RESUMEN

The atomic-scale structure, melting curve, and equation of state of liquid gallium has been measured to high pressure (p) and high temperature (T) up to 26 GPa and 900 K by in situ synchrotron x-ray diffraction. Ab initio molecular dynamics simulations up to 33.4 GPa and 1000 K are in excellent agreement with the experimental measurements, providing detailed insight at the level of pair distribution functions. The results reveal an absence of dimeric bonding in the liquid state and a continuous increase in average coordination number n[over ¯]_{Ga}^{Ga} from 10.4(2) at 0.1 GPa approaching ∼12 by 25 GPa. Topological cluster analysis of the simulation trajectories finds increasing fractions of fivefold symmetric and crystalline motifs at high p-T. Although the liquid progressively resembles a hard-sphere structure towards the melting curve, the deviation from this simple description remains large (≥40%) across all p-T space, with specific motifs of different geometries strongly correlating with low local two-body excess entropy at high p-T.

17.
Chem Res Toxicol ; 33(9): 2324-2337, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32786542

RESUMEN

The concern about titanium dioxide nanoparticles (TiO2-NPs) toxicity and their possible harmful effects on human health has increased. Their biological impact is related to some key physicochemical properties, that is, particle size, charge, crystallinity, shape, and agglomeration state. However, the understanding of the influence of such features on TiO2-NP toxicity remains quite limited. In this study, cytotoxicity, proinflammatory response, and oxidative stress caused by five types of TiO2-NPs with different physicochemical properties were investigated on A549 cells used either as monoculture or in co-culture with macrophages differentiated from the human monocytic THP-1 cells. We tailored bulk and surface TiO2 physicochemical properties and differentiated NPs for size/specific surface area, shape, agglomeration state, and surface functionalization/charge (aminopropyltriethoxysilane). An impact on the cytotoxicity and to a lesser extent on the proinflammatory responses depending on cell type was observed, namely, smaller, large-agglomerated TiO2-NPs were shown to be less toxic than P25, whereas rod-shaped TiO2-NPs were found to be more toxic. Besides, the positively charged particle was slightly more toxic than the negatively charged one. Contrarily, TiO2-NPs, whatever their physicochemical properties, did not induce significant ROS production in both cell systems compared to nontreated control groups. These results may contribute to a better understanding of TiO2-NPs toxicity in relation with their physicochemical features.


Asunto(s)
Nanopartículas/química , Titanio/farmacología , Células A549 , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Química Física , Citocinas/biosíntesis , Humanos , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo , Células THP-1 , Titanio/química
18.
J Chem Phys ; 153(9): 090901, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32891096

RESUMEN

We review recent developments in structural-dynamical phase transitions in trajectory space based on dynamic facilitation theory. An open question is how the dynamic facilitation perspective on the glass transition may be reconciled with thermodynamic theories that posit collective reorganization accompanied by a growing static length scale and, eventually, a vanishing configurational entropy. In contrast, dynamic facilitation theory invokes a dynamical phase transition between an active phase (close to the normal liquid) and an inactive phase, which is glassy and whose order parameter is either a time-averaged dynamic or structural quantity. In particular, the dynamical phase transition in systems with non-trivial thermodynamics manifests signatures of a lower critical point that lies between the mode-coupling crossover and the putative Kauzmann temperature, at which a thermodynamic phase transition to an ideal glass state would occur. We review these findings and discuss such criticality in the context of the low-temperature decrease in configurational entropy predicted by thermodynamic theories of the glass transition.

19.
Part Fibre Toxicol ; 17(1): 6, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996255

RESUMEN

BACKGROUND: Li-ion batteries (LIB) are used in most portable electronics. Among a wide variety of materials, LiCoO2 (LCO) is one of the most used for the cathode of LIB. LCO particles induce oxidative stress in mouse lungs due to their Co content, and have a strong inflammatory potential. In this study, we assessed the mutagenic potential of LCO particles in lung cells in comparison to another particulate material used in LIB, LTO (Li4Ti5O12), which has a low inflammatory potential compared to LCO particles. RESULTS: We assessed the mutagenic potential of LCO and LTO particles in vitro by performing a cytokinesis-block micronucleus (MN) assay with rat lung epithelial cells (RLE), as well as in vivo in alveolar type II epithelial (AT-II) cells. LCO particles induced MN in vitro at non-cytotoxic concentrations and in vivo at non-inflammatory doses, indicating a primary genotoxic mechanism. LTO particles did not induce MN. Electron paramagnetic resonance and terephthalate assays showed that LCO particles produce hydroxyl radicals (•OH). Catalase inhibits this •OH production. In an alkaline comet assay with the oxidative DNA damage repair enzyme human 8-oxoguanine DNA glycosylase 1, LCO particles induced DNA strand breaks and oxidative lesions. The addition of catalase reduced the frequency of MN induced by LCO particles in vitro. CONCLUSIONS: We report the mutagenic activity of LCO particles used in LIB in vitro and in vivo. Our data support the role of Co(II) ions released from these particles in their primary genotoxic activity which includes the formation of •OH by a Fenton-like reaction, oxidative DNA lesions and strand breaks, thus leading to chromosomal breaks and the formation of MN. Documenting the genotoxic potential of the other LIB particles, especially those containing Co and/or Ni, is therefore needed to guarantee a safe and sustainable development of LIB.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Cobalto/toxicidad , Daño del ADN , Radical Hidroxilo/metabolismo , Micronúcleos con Defecto Cromosómico/inducido químicamente , Óxidos/toxicidad , Material Particulado/toxicidad , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Líquido del Lavado Bronquioalveolar/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cobalto/química , Suministros de Energía Eléctrica , Femenino , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Óxidos/química , Tamaño de la Partícula , Material Particulado/química , Ratas , Ratas Wistar
20.
Arch Toxicol ; 94(9): 2981-2995, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32592078

RESUMEN

The pathogenicity of quartz involves lysosomal alteration in alveolar macrophages. This event triggers the inflammatory cascade that may lead to quartz-induced silicosis and eventually lung cancer. Experiments with synthetic quartz crystals recently showed that quartz dust is cytotoxic only when the atomic order of the crystal surfaces is upset by fracturing. Cytotoxicity was not observed when quartz had as-grown, unfractured surfaces. These findings raised questions on the potential impact of quartz surfaces on the phagolysosomal membrane upon internalization of the particles by macrophages. To gain insights on the surface-induced cytotoxicity of quartz, as-grown and fractured quartz particles in respirable size differing only in surface properties related to fracturing were prepared and physico-chemically characterized. Synthetic quartz particles were compared to a well-known toxic commercial quartz dust. Membranolysis was assessed on red blood cells, and quartz uptake, cell viability and effects on lysosomes were assessed on human PMA-differentiated THP-1 macrophages, upon exposing cells to increasing concentrations of quartz particles (10-250 µg/ml). All quartz samples were internalized, but only fractured quartz elicited cytotoxicity and phagolysosomal alterations. These effects were blunted when uptake was suppressed by incubating macrophages with particles at 4 °C. Membranolysis, but not cytotoxicity, was quenched when fractured quartz was incubated with cells in protein-supplemented medium. We propose that, upon internalization, the phagolysosome environment rapidly removes serum proteins from the quartz surface, restoring quartz membranolytic activity in the phagolysosomes. Our findings indicate that the cytotoxic activity of fractured quartz is elicited by promoting phagolysosomal membrane alteration.


Asunto(s)
Macrófagos Alveolares/efectos de los fármacos , Material Particulado/toxicidad , Cuarzo/toxicidad , Supervivencia Celular , Células Cultivadas , Polvo , Humanos , Macrófagos , Fagosomas , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA