Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 186(24): 5237-5253.e22, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37944512

RESUMEN

Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.


Asunto(s)
Cromosomas Artificiales de Levadura , Genoma Fúngico , Saccharomyces cerevisiae , Perfilación de la Expresión Génica , Proteómica , Saccharomyces cerevisiae/genética , Biología Sintética , ARN de Transferencia/genética , Cromosomas Artificiales de Levadura/genética
2.
Mol Cell ; 80(3): 470-484.e8, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33053322

RESUMEN

Cellular responses to environmental stress are frequently mediated by RNA-binding proteins (RBPs). Here, we examined global RBP dynamics in Saccharomyces cerevisiae in response to glucose starvation and heat shock. Each stress induced rapid remodeling of the RNA-protein interactome without corresponding changes in RBP abundance. Consistent with general translation shutdown, ribosomal proteins contacting the mRNA showed decreased RNA association. Among translation components, RNA association was most reduced for initiation factors involved in 40S scanning (eukaryotic initiation factor 4A [eIF4A], eIF4B, and Ded1), indicating a common mechanism of translational repression. In unstressed cells, eIF4A, eIF4B, and Ded1 primarily targeted the 5' ends of mRNAs. Following glucose withdrawal, 5' binding was abolished within 30 s, explaining the rapid translation shutdown, but mRNAs remained stable. Heat shock induced progressive loss of 5' RNA binding by initiation factors over ∼16 min and provoked mRNA degradation, particularly for translation-related factors, mediated by Xrn1. Taken together, these results reveal mechanisms underlying translational control of gene expression during stress.


Asunto(s)
Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas/fisiología , Estrés Fisiológico/fisiología , Regiones no Traducidas 5' , ARN Helicasas DEAD-box/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Glucosa/metabolismo , Respuesta al Choque Térmico/fisiología , Factores de Iniciación de Péptidos/fisiología , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Mol Cell ; 79(3): 488-503.e11, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32585128

RESUMEN

Transcription elongation rates influence RNA processing, but sequence-specific regulation is poorly understood. We addressed this in vivo, analyzing RNAPI in S. cerevisiae. Mapping RNAPI by Miller chromatin spreads or UV crosslinking revealed 5' enrichment and strikingly uneven local polymerase occupancy along the rDNA, indicating substantial variation in transcription speed. Two features of the nascent transcript correlated with RNAPI distribution: folding energy and GC content in the transcription bubble. In vitro experiments confirmed that strong RNA structures close to the polymerase promote forward translocation and limit backtracking, whereas high GC in the transcription bubble slows elongation. A mathematical model for RNAPI elongation confirmed the importance of nascent RNA folding in transcription. RNAPI from S. pombe was similarly sensitive to transcript folding, as were S. cerevisiae RNAPII and RNAPIII. For RNAPII, unstructured RNA, which favors slowed elongation, was associated with faster cotranscriptional splicing and proximal splice site use, indicating regulatory significance for transcript folding.


Asunto(s)
ARN Polimerasa III/genética , ARN Polimerasa II/genética , ARN Polimerasa I/genética , ARN de Hongos/química , Saccharomyces cerevisiae/genética , Elongación de la Transcripción Genética , Composición de Base , Secuencia de Bases , Sitios de Unión , Cromatina/química , Cromatina/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Regulación Fúngica de la Expresión Génica , Unión Proteica , Pliegue del ARN , ARN Polimerasa I/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa III/metabolismo , Sitios de Empalme de ARN , Empalme del ARN , ARN de Hongos/genética , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Termodinámica
4.
Trends Genet ; 36(9): 637-639, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32546405

RESUMEN

Eukaryotic genomes generate vast numbers of non-protein-coding RNAs (ncRNAs) that can inhibit mRNA synthesis through transcription interference, but the mechanisms are unclear. Gill et al. show that transcription of antisense ncRNAs induces 'elongation marks' on histones in promoter regions. These inhibit active nucleosome positioning required to maintain open transcription-initiation sites.


Asunto(s)
Nucleosomas , ARN no Traducido , Histonas/metabolismo , Regiones Promotoras Genéticas , Transcripción Genética
5.
Nucleic Acids Res ; 48(21): 12252-12268, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33231687

RESUMEN

The biogenesis of eukaryotic RNA polymerases is poorly understood. The present study used a combination of genetic and molecular approaches to explore the assembly of RNA polymerase III (Pol III) in yeast. We identified a regulatory link between Rbs1, a Pol III assembly factor, and Rpb10, a small subunit that is common to three RNA polymerases. Overexpression of Rbs1 increased the abundance of both RPB10 mRNA and the Rpb10 protein, which correlated with suppression of Pol III assembly defects. Rbs1 is a poly(A)mRNA-binding protein and mutational analysis identified R3H domain to be required for mRNA interactions and genetic enhancement of Pol III biogenesis. Rbs1 also binds to Upf1 protein, a key component in nonsense-mediated mRNA decay (NMD) and levels of RPB10 mRNA were increased in a upf1Δ strain. Genome-wide RNA binding by Rbs1 was characterized by UV cross-linking based approach. We demonstrated that Rbs1 directly binds to the 3' untranslated regions (3'UTRs) of many mRNAs including transcripts encoding Pol III subunits, Rpb10 and Rpc19. We propose that Rbs1 functions by opposing mRNA degradation, at least in part mediated by NMD pathway. Orthologues of Rbs1 protein are present in other eukaryotes, including humans, suggesting that this is a conserved regulatory mechanism.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genoma Fúngico , ARN Helicasas/genética , ARN Polimerasa III/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Regiones no Traducidas 3' , Secuencia de Aminoácidos , Secuencia Conservada , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Degradación de ARNm Mediada por Codón sin Sentido , Unión Proteica/efectos de la radiación , ARN Helicasas/metabolismo , ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Rayos Ultravioleta
6.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34298922

RESUMEN

The coordinated transcription of the genome is the fundamental mechanism in molecular biology. Transcription in eukaryotes is carried out by three main RNA polymerases: Pol I, II, and III. One basic problem is how a decrease in tRNA levels, by downregulating Pol III efficiency, influences the expression pattern of protein-coding genes. The purpose of this study was to determine the mRNA levels in the yeast mutant rpc128-1007 and its overdose suppressors, RBS1 and PRT1. The rpc128-1007 mutant prevents assembly of the Pol III complex and functionally mimics similar mutations in human Pol III, which cause hypomyelinating leukodystrophies. We applied RNAseq followed by the hierarchical clustering of our complete RNA-seq transcriptome and functional analysis of genes from the clusters. mRNA upregulation in rpc128-1007 cells was generally stronger than downregulation. The observed induction of mRNA expression was mostly indirect and resulted from the derepression of general transcription factor Gcn4, differently modulated by suppressor genes. rpc128-1007 mutation, regardless of the presence of suppressors, also resulted in a weak increase in the expression of ribosome biogenesis genes. mRNA genes that were downregulated by the reduction of Pol III assembly comprise the proteasome complex. In summary, our results provide the regulatory links affected by Pol III assembly that contribute differently to cellular fitness.


Asunto(s)
ARN Polimerasa III/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , ARN Polimerasas Dirigidas por ADN/genética , Regulación hacia Abajo/genética , Regulación Fúngica de la Expresión Génica/genética , Humanos , ARN Polimerasa II/genética , ARN de Transferencia/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Activación Transcripcional/genética , Transcriptoma/genética , Regulación hacia Arriba/genética
7.
Genome Res ; 26(7): 933-44, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27206856

RESUMEN

RNA polymerase III (RNAPIII) synthesizes a range of highly abundant small stable RNAs, principally pre-tRNAs. Here we report the genome-wide analysis of nascent transcripts attached to RNAPIII under permissive and restrictive growth conditions. This revealed strikingly uneven polymerase distributions across transcription units, generally with a predominant 5' peak. This peak was higher for more heavily transcribed genes, suggesting that initiation site clearance is rate-limiting during RNAPIII transcription. Down-regulation of RNAPIII transcription under stress conditions was found to be uneven; a subset of tRNA genes showed low response to nutrient shift or loss of the major transcription regulator Maf1, suggesting potential "housekeeping" roles. Many tRNA genes were found to generate long, 3'-extended forms due to read-through of the canonical poly(U) terminators. The degree of read-through was anti-correlated with the density of U-residues in the nascent tRNA, and multiple, functional terminators can be located far downstream. The steady-state levels of 3'-extended pre-tRNA transcripts are low, apparently due to targeting by the nuclear surveillance machinery, especially the RNA binding protein Nab2, cofactors for the nuclear exosome, and the 5'-exonuclease Rat1.


Asunto(s)
ARN Polimerasa III/fisiología , ARN de Transferencia/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ARN , Regiones Terminadoras Genéticas , Transcripción Genética
8.
Biochem Soc Trans ; 44(5): 1367-1375, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27911719

RESUMEN

The highly abundant, small stable RNAs that are synthesized by RNA polymerase III (RNAPIII) have key functional roles, particularly in the protein synthesis apparatus. Their expression is metabolically demanding, and is therefore coupled to changing demands for protein synthesis during cell growth and division. Here, we review the regulatory mechanisms that control the levels of RNAPIII transcripts and discuss their potential physiological relevance. Recent analyses have revealed differential regulation of tRNA expression at all steps on its biogenesis, with significant deregulation of mature tRNAs in cancer cells.


Asunto(s)
Regulación de la Expresión Génica , ARN Polimerasa III/metabolismo , ARN de Transferencia/genética , Transcripción Genética , Animales , Humanos , Modelos Genéticos , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN de Transferencia/metabolismo , Factores de Transcripción TFIII/metabolismo
9.
Nucleic Acids Res ; 42(19): 12189-99, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25294836

RESUMEN

During the last step in 40S ribosome subunit biogenesis, the PIN-domain endonuclease Nob1 cleaves the 20S pre-rRNA at site D, to form the mature 18S rRNAs. Here we report that cleavage occurs in particles that have largely been stripped of previously characterized pre-40S components, but retain the endonuclease Nob1, its binding partner Pno1 (Dim2) and the atypical ATPase Rio1. Within the Rio1-associated pre-40S particles, in vitro pre-rRNA cleavage was strongly stimulated by ATP and required nucleotide binding by Rio1. In vivo binding sites for Rio1, Pno1 and Nob1 were mapped by UV cross-linking in actively growing cells. Nob1 and Pno1 bind overlapping regions within the internal transcribed spacer 1, and both bind directly over cleavage site D. Binding sites for Rio1 were within the core of the 18S rRNA, overlapping tRNA interaction sites and distinct from the related kinase Rio2. Site D cleavage occurs within pre-40S-60S complexes and Rio1-associated particles efficiently assemble into these complexes, whereas Pno1 appeared to be depleted relative to Nob1. We speculate that Rio1-mediated dissociation of Pno1 from cleavage site D is the trigger for final 18S rRNA maturation.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Modelos Moleculares , Proteínas Nucleares/metabolismo , División del ARN , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
10.
RNA ; 18(10): 1823-32, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22919049

RESUMEN

tRNA precursors, which are transcribed by RNA polymerase III, undergo end-maturation, splicing, and base modifications. Hypomodified tRNAs, such as tRNA(Val(AAC)), lacking 7-methylguanosine and 5-methylcytidine modifications, are subject to degradation by a rapid tRNA decay pathway. Here we searched for genes which, when overexpressed, restored stability of tRNA(Val(AAC)) molecules in a modification-deficient trm4Δtrm8Δ mutant. We identified TEF1 and VAS1, encoding elongation factor eEF1A and valyl-tRNA synthetase respectively, which likely protect hypomodified tRNA(Val(AAC)) by direct interactions. We also identified MAF1 whose product is a general negative regulator of RNA polymerase III. Expression of a Maf1-7A mutant that constitutively repressed RNA polymerase III transcription resulted in increased stability of hypomodified tRNA(Val(AAC)). Strikingly, inhibition of tRNA transcription in a Maf1-independent manner, either by point mutation in RNA polymerase III subunit Rpc128 or decreased expression of Rpc17 subunit, also suppressed the turnover of the hypomodified tRNA(Val(AAC)). These results support a model where inhibition of tRNA transcription leads to stabilization of hypomodified tRNA(Val(AAC)) due to more efficient protection by tRNA-interacting proteins.


Asunto(s)
ARN Polimerasa III/antagonistas & inhibidores , Estabilidad del ARN/genética , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Factores de Transcripción/fisiología , Transcripción Genética , Regulación hacia Abajo/genética , Regulación Fúngica de la Expresión Génica , Biblioteca de Genes , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Modelos Biológicos , Proteínas Mutantes/fisiología , Organismos Modificados Genéticamente , Plásmidos/genética , ARN Polimerasa III/metabolismo , ARN Polimerasa III/fisiología , Procesamiento Postranscripcional del ARN/genética , Procesamiento Postranscripcional del ARN/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Transfección
11.
Nat Commun ; 14(1): 3013, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37230993

RESUMEN

Transcription by RNA polymerase I (RNAPI) represents most of the transcriptional activity in eukaryotic cells and is associated with the production of mature ribosomal RNA (rRNA). As several rRNA maturation steps are coupled to RNAPI transcription, the rate of RNAPI elongation directly influences processing of nascent pre-rRNA, and changes in RNAPI transcription rate can result in alternative rRNA processing pathways in response to growth conditions and stress. However, factors and mechanisms that control RNAPI progression by influencing transcription elongation rate remain poorly understood. We show here that the conserved fission yeast RNA-binding protein Seb1 associates with the RNAPI transcription machinery and promotes RNAPI pausing states along the rDNA. The overall faster progression of RNAPI at the rDNA in Seb1-deficient cells impaired cotranscriptional pre-rRNA processing and the production of mature rRNAs. Given that Seb1 also influences pre-mRNA processing by modulating RNAPII progression, our findings unveil Seb1 as a pause-promoting factor for RNA polymerases I and II to control cotranscriptional RNA processing.


Asunto(s)
ARN Polimerasa I , Schizosaccharomyces , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Transcripción Genética , Procesamiento Postranscripcional del ARN , ADN Ribosómico/metabolismo , Schizosaccharomyces/genética
12.
J Biol Chem ; 286(45): 39478-88, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21940626

RESUMEN

Maf1 is negative regulator of RNA polymerase III in yeast. We observed high levels of both primary transcript and end-matured, intron-containing pre-tRNAs in the maf1Δ strain. This pre-tRNA accumulation could be overcome by transcription inhibition, arguing against a direct role of Maf1 in tRNA maturation and suggesting saturation of processing machinery by the increased amounts of primary transcripts. Saturation of the tRNA exportin, Los1, is one reason why end-matured intron-containing pre-tRNAs accumulate in maf1Δ cells. However, it is likely possible that other components of the processing pathway are also limiting when tRNA transcription is increased. According to our model, Maf1-mediated transcription control and nuclear export by Los1 are two major stages of tRNA biosynthesis that are regulated by environmental conditions in a coordinated manner.


Asunto(s)
Núcleo Celular/metabolismo , Modelos Biológicos , ARN Polimerasa III/metabolismo , Precursores del ARN/biosíntesis , Procesamiento Postranscripcional del ARN/fisiología , ARN de Hongos/biosíntesis , ARN de Transferencia/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/genética , Eliminación de Gen , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , ARN Polimerasa III/genética , Precursores del ARN/genética , ARN de Hongos/genética , ARN de Transferencia/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
13.
Gene ; 809: 146034, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34688816

RESUMEN

We previously reported the function of Rbs1 protein in RNA polymerase III complex assembly via interactions with both, proteins and mRNAs. Rbs1 is a poly(A)-binding protein. The R3H domain in Rbs1 is required for mRNA interactions. The present study utilized the results of a genome-wide analysis of RNA binding by Rbs1 to show a direct interaction between Rbs1 with the 5'-untranslated region (5'-UTR) in PCL5 mRNA. By examining Pcl5 protein levels, we found that Rbs1 overproduction inhibited the translation of PCL5 mRNA. Pcl5 is a cyclin that is associated with Pho85 kinase, which is involved in the degradation of Gcn4 transcription factor. Consequently, lower levels of Pcl5 that resulted from Rbs1 overproduction increased the Gcn4 response. The functional R3H domain in Rbs1 was required for the downregulation of Pcl5 translation and increase in the Gcn4 response, thus validating a regulatory mechanism that relies on the interaction between Rbs1 and the 5'-UTR in PCL5 mRNA. Rbs1 protein was further characterized by microscopy, which identified single Rbs1 assemblies in part of the cell population. The presence of Rbs1 aggregates was confirmed by the fractionation of cellular extracts. Altogether, our results suggest a more general role of Rbs1 in regulating cellular metabolism beyond the assembly of RNA polymerase III.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Regiones no Traducidas 5' , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Ciclinas/genética , Ciclinas/metabolismo , Regulación Fúngica de la Expresión Génica , Complejos Multiproteicos/metabolismo , Agregado de Proteínas/genética , ARN Polimerasa III/metabolismo , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Nat Commun ; 13(1): 649, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115551

RESUMEN

RMRP encodes a non-coding RNA forming the core of the RNase MRP ribonucleoprotein complex. Mutations cause Cartilage Hair Hypoplasia (CHH), characterized by skeletal abnormalities and impaired T cell activation. Yeast RNase MRP cleaves a specific site in the pre-ribosomal RNA (pre-rRNA) during ribosome synthesis. CRISPR-mediated disruption of RMRP in human cells lines caused growth arrest, with pre-rRNA accumulation. Here, we analyzed disease-relevant primary cells, showing that mutations in RMRP impair mouse T cell activation and delay pre-rRNA processing. Patient-derived human fibroblasts with CHH-linked mutations showed similar pre-rRNA processing delay. Human cells engineered with the most common CHH mutation (70AG in RMRP) show specifically impaired pre-rRNA processing, resulting in reduced mature rRNA and a reduced ratio of cytosolic to mitochondrial ribosomes. Moreover, the 70AG mutation caused a reduction in intact RNase MRP complexes. Together, these results indicate that CHH is a ribosomopathy.


Asunto(s)
Endorribonucleasas/genética , Mutación , ARN Largo no Codificante/genética , ARN Ribosómico/genética , Ribosomas/genética , Animales , Secuencia de Bases , Proliferación Celular/genética , Células Cultivadas , Endorribonucleasas/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Cabello/anomalías , Cabello/metabolismo , Enfermedad de Hirschsprung/genética , Enfermedad de Hirschsprung/metabolismo , Humanos , Células K562 , Ratones Endogámicos C57BL , Ratones Noqueados , Osteocondrodisplasias/congénito , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Enfermedades de Inmunodeficiencia Primaria/genética , Enfermedades de Inmunodeficiencia Primaria/metabolismo , Pliegue del ARN , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Ribosomas/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo
15.
Front Mol Biosci ; 8: 680090, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055890

RESUMEN

RNA polymerase I (RNAPI) and RNAPIII are multi-heterogenic protein complexes that specialize in the transcription of highly abundant non-coding RNAs, such as ribosomal RNA (rRNA) and transfer RNA (tRNA). In terms of subunit number and structure, RNAPI and RNAPIII are more complex than RNAPII that synthesizes thousands of different mRNAs. Specific subunits of the yeast RNAPI and RNAPIII form associated subcomplexes that are related to parts of the RNAPII initiation factors. Prior to their delivery to the nucleus where they function, RNAP complexes are assembled at least partially in the cytoplasm. Yeast RNAPI and RNAPIII share heterodimer Rpc40-Rpc19, a functional equivalent to the αα homodimer which initiates assembly of prokaryotic RNAP. In the process of yeast RNAPI and RNAPIII biogenesis, Rpc40 and Rpc19 form the assembly platform together with two small, bona fide eukaryotic subunits, Rpb10 and Rpb12. We propose that this assembly platform is co-translationally seeded while the Rpb10 subunit is synthesized by cytoplasmic ribosome machinery. The translation of Rpb10 is stimulated by Rbs1 protein, which binds to the 3'-untranslated region of RPB10 mRNA and hypothetically brings together Rpc19 and Rpc40 subunits to form the αα-like heterodimer. We suggest that such a co-translational mechanism is involved in the assembly of RNAPI and RNAPIII complexes.

16.
Wellcome Open Res ; 5: 261, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33313418

RESUMEN

Infection with SARS-CoV-2 is expected to result in substantial reorganization of host cell RNA metabolism. We identified 14 proteins that were predicted to interact with host RNAs or RNA binding proteins, based on published data for SARS-CoV and SARS-CoV-2. Here, we describe a series of affinity-tagged and codon-optimized expression constructs for each of these 14 proteins. Each viral gene was separately tagged at the N-terminus with Flag-His 8, the C-terminus with His 8-Flag, or left untagged. The resulting constructs were stably integrated into the HEK293 Flp-In T-REx genome. Each viral gene was expressed under the control of an inducible Tet-On promoter, allowing expression levels to be tuned to match physiological conditions during infection. Expression time courses were successfully generated for most of the fusion proteins and quantified by western blot. A few fusion proteins were poorly expressed, whereas others, including Nsp1, Nsp12, and N protein, were toxic unless care was taken to minimize background expression. All plasmids can be obtained from Addgene and cell lines are available. We anticipate that availability of these resources will facilitate a more detailed understanding of coronavirus molecular biology.

17.
Nat Commun ; 10(1): 563, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718516

RESUMEN

Ribosome-associated quality control (RQC) pathways monitor and respond to ribosome stalling. Using in vivo UV-crosslinking and mass spectrometry, we identified a C-terminal region in Hel2/Rqt1 as an RNA binding domain. Complementary crosslinking and sequencing data for Hel2 revealed binding to 18S rRNA and translated mRNAs. Hel2 preferentially bound mRNAs upstream and downstream of the stop codon. C-terminal truncation of Hel2 abolished the major 18S crosslink and polysome association, and altered mRNA binding. HEL2 deletion caused loss of RQC and, we report here, no-go decay (NGD), with comparable effects for Hel2 truncation including the RNA-binding site. Asc1 acts upstream of Hel2 in RQC and asc1∆ impaired Hel2 binding to 18S and mRNA. In conclusion: Hel2 is recruited or stabilized on translating 40S ribosomal subunits by interactions with 18S rRNA and Asc1. This 18S interaction is required for Hel2 function in RQC and NGD. Hel2 probably interacts with mRNA during translation termination.


Asunto(s)
ARN Ribosómico 18S/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Mutación/genética , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología , Estabilidad del ARN/genética , Estabilidad del ARN/fisiología , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética
18.
Wiley Interdiscip Rev RNA ; 6(1): 129-39, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25176256

RESUMEN

Eukaryotic ribosomes are synthesized in a complex, multistep pathway. This begins with transcription of the rDNA genes by a specialized RNA polymerase, accompanied by the cotranscriptional binding of large numbers of ribosome synthesis factors, small nucleolar RNAs and ribosomal proteins. Cleavage of the nascent transcript releases the early pre-40S and pre-60S particles, which acquire export competence in the nucleoplasm prior to translocation through the nuclear pore complexes and final maturation to functional ribosomal subunits in the cytoplasm. This review will focus on the many and complex interactions occurring during pre-rRNA synthesis, particularly in budding yeast in which the pathway is best understood.


Asunto(s)
Sustancias Macromoleculares/metabolismo , Precursores del ARN/biosíntesis , ARN Ribosómico/biosíntesis , Ribosomas/metabolismo , Transcripción Genética , Transporte Biológico , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas Ribosómicas/metabolismo
19.
Gene ; 526(1): 23-9, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23639960

RESUMEN

In eukaryotes, three RNA polymerases are responsible for transcription. These complex enzymes show many similarities with one another, such as several common or highly homologue subunits, while some other features, such as transcript length, diversity, processing, and transcription regulation, are unique to each polymerase. The present article reviews recent publications focusing on the impact of transcription of various RNA species in yeast on posttranscriptional steps such as pre-RNA processing, transport and decay. Two major conclusions emerge from a critical analysis of the current knowledge. (1) The kinetics of transcription elongation affects cotranscriptional pre-RNA processing. (2) The efficiency of transcription, by saturating the proteins interacting with RNA, indirectly affects the processing, export and decay of transcripts.


Asunto(s)
Procesamiento Postranscripcional del ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Wiley Interdiscip Rev RNA ; 4(6): 709-22, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24039171

RESUMEN

tRNA biogenesis in yeast involves the synthesis of the initial transcript by RNA polymerase III followed by processing and controlled degradation in both the nucleus and the cytoplasm. A vast landscape of regulatory elements controlling tRNA stability in yeast has emerged from recent studies. Diverse pathways of tRNA maturation generate multiple stable and unstable intermediates. A significant impact on tRNA stability is exerted by a variety of nucleotide modifications. Pre-tRNAs are targets of exosome-dependent surveillance in the nucleus. Some tRNAs that are hypomodified or bear specific destabilizing mutations are directed to the rapid tRNA decay pathway leading to 5'→3' exonucleolytic degradation by Rat1 and Xrn1. tRNA molecules are selectively marked for degradation by a double CCA at their 3' ends. In addition, under different stress conditions, tRNA half-molecules can be generated by independent endonucleolytic cleavage events. Recent studies reveal unexpected relationships between the subsequent steps of tRNA biosynthesis and the mechanisms controlling its quality and turnover.


Asunto(s)
Procesamiento Postranscripcional del ARN/genética , Estabilidad del ARN/genética , ARN de Transferencia/biosíntesis , Transcripción Genética , Núcleo Celular/genética , Citoplasma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , ARN Polimerasa III/genética , ARN de Transferencia/genética , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA