Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Development ; 145(12)2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29769218

RESUMEN

To distribute and establish the melanocyte lineage throughout the skin and other developing organs, melanoblasts undergo several rounds of proliferation, accompanied by migration through complex environments and differentiation. Melanoblast migration requires interaction with extracellular matrix of the epidermal basement membrane and with surrounding keratinocytes in the developing skin. Migration has been characterized by measuring speed, trajectory and directionality of movement, but there are many unanswered questions about what motivates and defines melanoblast migration. Here, we have established a general mathematical model to simulate the movement of melanoblasts in the epidermis based on biological data, assumptions and hypotheses. Comparisons between experimental data and computer simulations reinforce some biological assumptions, and suggest new ideas for how melanoblasts and keratinocytes might influence each other during development. For example, it appears that melanoblasts instruct each other to allow a homogeneous distribution in the tissue and that keratinocytes may attract melanoblasts until one is stably attached to them. Our model reveals new features of how melanoblasts move and, in particular, suggest that melanoblasts leave a repulsive trail behind them as they move through the skin.


Asunto(s)
Movimiento Celular/fisiología , Simulación por Computador , Queratinocitos/metabolismo , Melanocitos/citología , Piel/embriología , Animales , Membrana Basal/metabolismo , Adhesión Celular/fisiología , Matriz Extracelular/metabolismo , Melanocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Teóricos
2.
J Cell Sci ; 130(20): 3455-3466, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28871044

RESUMEN

Melanoma cells steer out of tumours using self-generated lysophosphatidic acid (LPA) gradients. The cells break down LPA, which is present at high levels around the tumours, creating a dynamic gradient that is low in the tumour and high outside. They then migrate up this gradient, creating a complex and evolving outward chemotactic stimulus. Here, we introduce a new assay for self-generated chemotaxis, and show that raising LPA levels causes a delay in migration rather than loss of chemotactic efficiency. Knockdown of the lipid phosphatase LPP3 - but not of its homologues LPP1 or LPP2 - diminishes the cell's ability to break down LPA. This is specific for chemotactically active LPAs, such as the 18:1 and 20:4 species. Inhibition of autotaxin-mediated LPA production does not diminish outward chemotaxis, but loss of LPP3-mediated LPA breakdown blocks it. Similarly, in both 2D and 3D invasion assays, knockdown of LPP3 diminishes the ability of melanoma cells to invade. Our results demonstrate that LPP3 is the key enzyme in the breakdown of LPA by melanoma cells, and confirm the importance of attractant breakdown in LPA-mediated cell steering.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Lisofosfolípidos/metabolismo , Melanoma/metabolismo , Fosfatidato Fosfatasa/fisiología , Neoplasias Cutáneas/metabolismo , Línea Celular Tumoral , Quimiotaxis , Humanos , Melanoma/patología , Invasividad Neoplásica , Neoplasias Cutáneas/patología
3.
PLoS Biol ; 14(3): e1002404, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26981861

RESUMEN

Chemotaxis is fundamentally important, but the sources of gradients in vivo are rarely well understood. Here, we analyse self-generated chemotaxis, in which cells respond to gradients they have made themselves by breaking down globally available attractants, using both computational simulations and experiments. We show that chemoattractant degradation creates steep local gradients. This leads to surprising results, in particular the existence of a leading population of cells that moves highly directionally, while cells behind this group are undirected. This leading cell population is denser than those following, especially at high attractant concentrations. The local gradient moves with the leading cells as they interact with their surroundings, giving directed movement that is unusually robust and can operate over long distances. Even when gradients are applied from external sources, attractant breakdown greatly changes cells' responses and increases robustness. We also consider alternative mechanisms for directional decision-making and show that they do not predict the features of population migration we observe experimentally. Our findings provide useful diagnostics to allow identification of self-generated gradients and suggest that self-generated chemotaxis is unexpectedly universal in biology and medicine.


Asunto(s)
Factores Quimiotácticos/metabolismo , Quimiotaxis , Movimiento Celular , Dictyostelium
4.
Cells ; 13(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38994966

RESUMEN

Fluorescence resonance energy transfer (FRET) biosensors have proven to be an indispensable tool in cell biology and, more specifically, in the study of G-protein signalling. The best method of measuring the activation status or FRET state of a biosensor is often fluorescence lifetime imaging microscopy (FLIM), as it does away with many disadvantages inherent to fluorescence intensity-based methods and is easily quantitated. Despite the significant potential, there is a lack of reliable FLIM-FRET biosensors, and the data processing and analysis workflows reported previously face reproducibility challenges. Here, we established a system in live primary mouse pancreatic ductal adenocarcinoma cells, where we can detect the activation of an mNeonGreen-Gαi3-mCherry-Gγ2 biosensor through the lysophosphatidic acid receptor (LPAR) with 2-photon time-correlated single-photon counting (TCSPC) FLIM. This combination gave a superior signal to the commonly used mTurquoise2-mVenus G-protein biosensor. This system has potential as a platform for drug screening, or to answer basic cell biology questions in the field of G-protein signalling.


Asunto(s)
Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Animales , Transferencia Resonante de Energía de Fluorescencia/métodos , Ratones , Técnicas Biosensibles/métodos , Proteínas de Unión al GTP/metabolismo , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Línea Celular Tumoral , Receptores del Ácido Lisofosfatídico/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología
5.
Curr Biol ; 34(19): 4436-4451.e9, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39332399

RESUMEN

Cell migration requires the constant modification of cellular shape by reorganization of the actin cytoskeleton. Fine-tuning of this process is critical to ensure new actin filaments are formed only at specific times and in defined regions of the cell. The Scar/WAVE complex is the main catalyst of pseudopod and lamellipodium formation during cell migration. It is a pentameric complex highly conserved through eukaryotic evolution and composed of Scar/WAVE, Abi, Nap1/NCKAP1, Pir121/CYFIP, and HSPC300/Brk1. Its function is usually attributed to activation of the Arp2/3 complex through Scar/WAVE's VCA domain, while other parts of the complex are expected to mediate spatial-temporal regulation and have no direct role in actin polymerization. Here, we show in both B16-F1 mouse melanoma and Dictyostelium discoideum cells that Scar/WAVE without its VCA domain still induces the formation of morphologically normal, actin-rich protrusions, extending at comparable speeds despite a drastic reduction of Arp2/3 recruitment. However, the proline-rich regions in Scar/WAVE and Abi subunits are essential, though either is sufficient for the generation of actin protrusions in B16-F1 cells. We further demonstrate that N-WASP can compensate for the absence of Scar/WAVE's VCA domain and induce lamellipodia formation, but it still requires an intact WAVE complex, even if without its VCA domain. We conclude that the Scar/WAVE complex does more than directly activating Arp2/3, with proline-rich domains playing a central role in promoting actin protrusions. This implies a broader function for the Scar/WAVE complex, concentrating and simultaneously activating many actin-regulating proteins as a lamellipodium-producing core.


Asunto(s)
Actinas , Dictyostelium , Animales , Ratones , Dictyostelium/metabolismo , Dictyostelium/fisiología , Actinas/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Movimiento Celular , Seudópodos/metabolismo , Seudópodos/fisiología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Dominios Proteicos , Citoesqueleto de Actina/metabolismo , Proteínas Protozoarias
6.
Curr Biol ; 33(9): 1704-1715.e3, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37001521

RESUMEN

Negative chemotaxis, where eukaryotic cells migrate away from repellents, is important throughout biology, for example, in nervous system patterning and resolution of inflammation. However, the mechanisms by which molecules repel migrating cells are unknown. Here, we use predictive modeling and experiments with Dictyostelium cells to show that competition between different ligands that bind to the same receptor leads to effective chemorepulsion. 8-CPT-cAMP, widely described as a simple chemorepellent, is inactive on its own and only repels cells when it acts in combination with the attractant cAMP. If cells degrade either competing ligand, the pattern of migration becomes more complex; cells may be repelled in one part of a gradient but attracted elsewhere, leading to populations moving in different directions in the same assay or converging in an arbitrary place. More counterintuitively still, two chemicals that normally attract cells can become repellent when combined. Computational models of chemotaxis are now accurate enough to predict phenomena that have not been anticipated by experiments. We have used them to identify new mechanisms that drive reverse chemotaxis, which we have confirmed through experiments with real cells. These findings are important whenever multiple ligands compete for the same receptors.


Asunto(s)
Quimiotaxis , Dictyostelium , Quimiotaxis/fisiología , Factores Quimiotácticos/farmacología , Factores Quimiotácticos/metabolismo , Dictyostelium/metabolismo , Células Eucariotas/metabolismo
7.
Trends Cell Biol ; 32(7): 585-596, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35351380

RESUMEN

Chemotaxis, where cell movement is steered by chemical gradients, is a widespread and essential way of organising cell behaviour. But where do the instructions come from - who makes gradients, and how are they controlled? We discuss the emerging concept that chemotactic cells often create attractant gradients at the same time as responding to them. This self-guidance is more robust, works across greater distances, and is more informative about the local environment than passive responses. Several mechanisms can establish autonomous gradients. Best known are self-generated gradients, in which the cells degrade a widespread attractant, but cells also produce repellents and 'relay' by secreting fresh attractant after stimulation. Understanding how cells make and interpret their own chemoattractant gradients is fundamental to understanding the spatial patterns seen in all organisms.


Asunto(s)
Factores Quimiotácticos , Quimiotaxis , Movimiento Celular , Factores Quimiotácticos/química , Factores Quimiotácticos/metabolismo , Factores Quimiotácticos/farmacología , Quimiotaxis/fisiología , Humanos
8.
Front Mol Biosci ; 9: 965921, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36106016

RESUMEN

Cell polarity and cell migration both depend on pseudopodia and lamellipodia formation. These are regulated by coordinated signaling acting through G-protein coupled receptors and kinases such as PKB/AKT and SGK, as well as the actin cytoskeletal machinery. Here we show that both Dictyostelium PKB and SGK kinases (encoded by pkbA and pkgB) are dispensable for chemotaxis towards folate. However, both are involved in the regulation of pseudopod formation and thus cell motility. Cells lacking pkbA and pkgB showed a substantial drop in cell speed. Actin polymerization is perturbed in pkbA- and reduced in pkgB- and pkbA-/pkgB- mutants. The Scar/WAVE complex, key catalyst of pseudopod formation, is recruited normally to the fronts of all mutant cells (pkbA-, pkgB- and pkbA-/pkgB-), but is unexpectedly unable to recruit the Arp2/3 complex in cells lacking SGK. Consequently, loss of SGK causes a near-complete loss of normal actin pseudopodia, though this can be rescued by overexpression of PKB. Hence both PKB and SGK are required for correct assembly of F-actin and recruitment of the Arp2/3 complex by the Scar/WAVE complex during pseudopodia formation.

9.
Front Cell Dev Biol ; 8: 133, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32195256

RESUMEN

Chemotaxis is a widespread mechanism that allows migrating cells to steer to where they are needed. Attractant gradients may be imposed by external sources, or self-generated, when cells create their own steep local gradients by breaking down a prevalent, broadly distributed attractant. Here we show that chemotaxis works far more robustly toward self-generated gradients. Cells can only respond efficiently to a restricted range of attractant concentrations; if attractants are too dilute, their gradients are too shallow for cells to sense, but if they are too high, all receptors become saturated and cells cannot perceive spatial differences. Self-generated gradients are robust because cells maintain the attractant at optimal concentrations. A wave can recruit varying numbers of steered cells, and cells can take time to break down attractant before starting to migrate. Self-generated gradients can therefore operate over a greater range of attractant concentrations, larger distances, and longer times than imposed gradients. The robustness is further enhanced at low cell numbers if attractants also act as mitogens, and at high attractant concentrations if the enzymes that break down attractants are themselves induced by constant attractant levels.

10.
Science ; 369(6507)2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32855311

RESUMEN

During development and metastasis, cells migrate large distances through complex environments. Migration is often guided by chemotaxis, but simple chemoattractant gradients between a source and sink cannot direct cells over such ranges. We describe how self-generated gradients, created by cells locally degrading attractant, allow single cells to navigate long, tortuous paths and make accurate choices between live channels and dead ends. This allows cells to solve complex mazes efficiently. Cells' accuracy at finding live channels was determined by attractant diffusivity, cell speed, and path complexity. Manipulating these parameters directed cells in mathematically predictable ways; specific combinations can even actively misdirect them. We propose that the length and complexity of many long-range migratory processes, including inflammation and germ cell migration, means that self-generated gradients are needed for successful navigation.


Asunto(s)
Factores Quimiotácticos/metabolismo , Quimiotaxis , Células Eucariotas/fisiología , Dictyostelium , Humanos , Metástasis de la Neoplasia
11.
Sci Rep ; 9(1): 8784, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31217532

RESUMEN

Stereotyped behaviors are series of postures that show very little variability between repeats. They have been used to classify the dynamics of individuals, groups and species without reference to the lower-level mechanisms that drive them. Stereotypes are easily identified in animals due to strong constraints on the number, shape, and relative positions of anatomical features, such as limbs, that may be used as landmarks for posture identification. In contrast, the identification of stereotypes in single cells poses a significant challenge as the cell lacks these landmark features, and finding constraints on cell shape is a non-trivial task. Here, we use the maximum caliber variational method to build a minimal model of cell behavior during migration. Without reference to biochemical details, we are able to make behavioral predictions over timescales of minutes using only changes in cell shape over timescales of seconds. We use drug treatment and genetics to demonstrate that maximum caliber descriptors can discriminate between healthy and aberrant migration, thereby showing potential applications for maximum caliber methods in automated disease screening, for example in the identification of behaviors associated with cancer metastasis.


Asunto(s)
Movimiento Celular , Dictyostelium/citología , Tamizaje Masivo , Simulación por Computador , Dictyostelium/genética , Análisis de Fourier , Genotipo , Análisis de Componente Principal , Conducta Estereotipada
12.
Dev Cell ; 48(4): 491-505.e9, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30612939

RESUMEN

Signaling from chemoattractant receptors activates the cytoskeleton of crawling cells for chemotaxis. We show using phosphoproteomics that different chemoattractants cause phosphorylation of the same core set of around 80 proteins in Dictyostelium cells. Strikingly, the majority of these are phosphorylated at an [S/T]PR motif by the atypical MAP kinase ErkB. Unlike most chemotactic responses, ErkB phosphorylations are persistent and do not adapt to sustained stimulation with chemoattractant. ErkB integrates dynamic autophosphorylation with chemotactic signaling through G-protein-coupled receptors. Downstream, our phosphoproteomics data define a broad panel of regulators of chemotaxis. Surprisingly, targets are almost exclusively other signaling proteins, rather than cytoskeletal components, revealing ErkB as a regulator of regulators rather than acting directly on the motility machinery. ErkB null cells migrate slowly and orientate poorly over broad dynamic ranges of chemoattractant. Our data indicate a central role for ErkB and its substrates in directing chemotaxis.


Asunto(s)
Quimiotaxis/fisiología , AMP Cíclico/metabolismo , Dictyostelium/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Animales , Factores Quimiotácticos/metabolismo , Citoesqueleto/metabolismo , Fosforilación , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología
13.
ACS Chem Biol ; 13(6): 1506-1513, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29792671

RESUMEN

Among the amoebozoan species capable of forming fruiting bodies, the dictyostelid social amoebae stand out since they form true multicellular organisms by means of single cell aggregation. Upon food depletion, cells migrate across gradients of extracellular signals initiated by cells in aggregation centers. The model species that is widely used to study multicellular development of social amoebae, Dictyostelium discoideum, uses cyclic adenosine monophosphate (cAMP) as a chemoattractant to coordinate aggregation. Molecular phylogeny studies suggested that social amoebae evolved in four major groups, of which groups 1 and 2 are paraphyletic to groups 3 and 4. During early development, intercellular communication with cAMP appears to be restricted to group 4 species. Cells of group 1 and 2 taxa do not respond chemotactically to extracellular cAMP and likely use a dipeptide chemoattractant known as glorin ( N-propionyl-γ-L-glutamyl-L-ornithin-δ-lactam-ethylester) to regulate aggregation. Directional migration of glorin-responsive cells requires the periodic breakdown of the chemoattractant. Here, we identified an extracellular enzymatic activity (glorinase) in the glorin-responsive group 2 taxon Polysphondylium pallidum leading to the inactivation of glorin. We determined the inactivation mechanism to proceed via hydrolytic ethyl ester cleavage of the γ-glutamyl moiety of glorin. Synthetic glorinamide, in which the ethyl ester group was substituted by an ethyl amide group, had glorin-like biological activity but was resistant to degradation by glorinase. Our observations pave the way for future investigations toward an ancient eukaryotic chemotaxis system.


Asunto(s)
Factores Quimiotácticos/metabolismo , Dictyosteliida/metabolismo , Dipéptidos/metabolismo , Ésteres/metabolismo , Lactamas/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Factores Quimiotácticos/química , Dictyosteliida/crecimiento & desarrollo , Dipéptidos/química , Ésteres/química , Hidrólisis , Lactamas/química , Proteínas Protozoarias/metabolismo
14.
Nat Cell Biol ; 20(10): 1159-1171, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30250061

RESUMEN

Actin-based protrusions are reinforced through positive feedback, but it is unclear what restricts their size, or limits positive signals when they retract or split. We identify an evolutionarily conserved regulator of actin-based protrusion: CYRI (CYFIP-related Rac interactor) also known as Fam49 (family of unknown function 49). CYRI binds activated Rac1 via a domain of unknown function (DUF1394) shared with CYFIP, defining DUF1394 as a Rac1-binding module. CYRI-depleted cells have broad lamellipodia enriched in Scar/WAVE, but reduced protrusion-retraction dynamics. Pseudopods induced by optogenetic Rac1 activation in CYRI-depleted cells are larger and longer lived. Conversely, CYRI overexpression suppresses recruitment of active Scar/WAVE to the cell edge, resulting in short-lived, unproductive protrusions. CYRI thus focuses protrusion signals and regulates pseudopod complexity by inhibiting Scar/WAVE-induced actin polymerization. It thus behaves like a 'local inhibitor' as predicted in widely accepted mathematical models, but not previously identified in cells. CYRI therefore regulates chemotaxis, cell migration and epithelial polarization by controlling the polarity and plasticity of protrusions.


Asunto(s)
Movimiento Celular , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Seudópodos/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Células COS , Línea Celular Tumoral , Quimiotaxis/genética , Chlorocebus aethiops , Perros , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Células de Riñón Canino Madin Darby , Polimerizacion , Unión Proteica , Seudópodos/genética , Transducción de Señal/genética , Proteína de Unión al GTP rac1/genética
15.
Curr Opin Cell Biol ; 42: 46-51, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27105308

RESUMEN

Chemotaxis is a fundamentally important part of biology, but we know very little about how gradients of chemoattractant are formed. One answer is self-generated gradients, in which the moving cells break down the attractant to provide their own gradient as they migrate. Here we discuss where self-generated gradients are known, how they can be recognized, and where they are likely to be found in the future.


Asunto(s)
Factores Quimiotácticos/metabolismo , Quimiotaxis , Animales , Retroalimentación Fisiológica , Humanos , Proteolisis
16.
Sci Rep ; 4: 5688, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-25023459

RESUMEN

Biological cells are often found to sense their chemical environment near the single-molecule detection limit. Surprisingly, this precision is higher than simple estimates of the fundamental physical limit, hinting towards active sensing strategies. In this work, we analyse the effect of cell memory, e.g. from slow biochemical processes, on the precision of sensing by cell-surface receptors. We derive analytical formulas, which show that memory significantly improves sensing in weakly fluctuating environments. However, surprisingly when memory is adjusted dynamically, the precision is always improved, even in strongly fluctuating environments. In support of this prediction we quantify the directional biases in chemotactic Dictyostelium discoideum cells in a flow chamber with alternating chemical gradients. The strong similarities between cell sensing and control engineering suggest universal problem-solving strategies of living matter.


Asunto(s)
Dictyostelium/fisiología , Algoritmos , Factores Quimiotácticos/fisiología , Quimiotaxis , Simulación por Computador , Dictyostelium/citología , Microfluídica , Receptores de Superficie Celular/fisiología
17.
Sci Rep ; 3: 2606, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24008441

RESUMEN

The behaviour of an organism often reflects a strategy for coping with its environment. Such behaviour in higher organisms can often be reduced to a few stereotyped modes of movement due to physiological limitations, but finding such modes in amoeboid cells is more difficult as they lack these constraints. Here, we examine cell shape and movement in starved Dictyostelium amoebae during migration toward a chemoattractant in a microfluidic chamber. We show that the incredible variety in amoeboid shape across a population can be reduced to a few modes of variation. Interestingly, cells use distinct modes depending on the applied chemical gradient, with specific cell shapes associated with shallow, difficult-to-sense gradients. Modelling and drug treatment reveals that these behaviours are intrinsically linked with accurate sensing at the physical limit. Since similar behaviours are observed in a diverse range of cell types, we propose that cell shape and behaviour are conserved traits.


Asunto(s)
Forma de la Célula/fisiología , Quimiotaxis/fisiología , Dictyostelium/citología , Dictyostelium/fisiología , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA