Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Food Microbiol ; 121: 104520, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637082

RESUMEN

Sequence-based analysis of fermented foods and beverages' microbiomes offers insights into their impact on taste and consumer health. High-throughput metagenomics provide detailed taxonomic and functional community profiling, but bacterial and yeast genome reconstruction and mobile genetic elements tracking are to be improved. We established a pipeline for exploring fermented foods microbiomes using metagenomics coupled with chromosome conformation capture (Hi-C metagenomics). The approach was applied to analyze a collection of spontaneously fermented beers and ciders (n = 12). The Hi-C reads were used to reconstruct the metagenome-assembled genomes (MAGs) of bacteria and yeasts facilitating subsequent comparative genomic analysis, assembly scaffolding and exploration of "plasmid-bacteria" links. For a subset of beverages, yeasts were isolated and characterized phenotypically. The reconstructed Hi-C MAGs primarily belonged to the Lactobacillaceae family in beers, along with Acetobacteraceae and Enterobacteriaceae in ciders, exhibiting improved quality compared to conventional metagenomic MAGs. Comparative genomic analysis of Lactobacillaceae Hi-C MAGs revealed clustering by niche and suggested genetic determinants of survival and probiotic potential. For Pediococcus damnosus, Hi-C-based networks of contigs enabled linking bacteria with plasmids. Analyzing phylogeny and accessory genes in the context of known reference genomes offered insights into the niche specialization of beer lactobacilli. The subspecies-level diversity of cider Tatumella spp. was disentangled using a Hi-C-based graph. We obtained highly complete yeast Hi-C MAGs primarily represented by Brettanomyces and Saccharomyces, with Hi-C-facilitated chromosome-level genome assembly for the former. Utilizing Hi-C metagenomics to unravel the genomic content of individual species can provide a deeper understanding of the ecological interactions within the food microbiome, aid in bioprospecting beneficial microorganisms, improving quality control and improving innovative fermented products.


Asunto(s)
Saccharomyces cerevisiae , Saccharomyces , Saccharomyces cerevisiae/genética , Cerveza/microbiología , Bacterias/genética , Plásmidos , Saccharomyces/genética , Metagenoma , Metagenómica , Enterobacteriaceae/genética
2.
Nucleic Acids Res ; 49(18): 10524-10541, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-33836078

RESUMEN

Liquid-liquid phase separation (LLPS) contributes to the spatial and functional segregation of molecular processes within the cell nucleus. However, the role played by LLPS in chromatin folding in living cells remains unclear. Here, using stochastic optical reconstruction microscopy (STORM) and Hi-C techniques, we studied the effects of 1,6-hexanediol (1,6-HD)-mediated LLPS disruption/modulation on higher-order chromatin organization in living cells. We found that 1,6-HD treatment caused the enlargement of nucleosome clutches and their more uniform distribution in the nuclear space. At a megabase-scale, chromatin underwent moderate but irreversible perturbations that resulted in the partial mixing of A and B compartments. The removal of 1,6-HD from the culture medium did not allow chromatin to acquire initial configurations, and resulted in more compact repressed chromatin than in untreated cells. 1,6-HD treatment also weakened enhancer-promoter interactions and TAD insulation but did not considerably affect CTCF-dependent loops. Our results suggest that 1,6-HD-sensitive LLPS plays a limited role in chromatin spatial organization by constraining its folding patterns and facilitating compartmentalization at different levels.


Asunto(s)
Cromatina/química , Glicoles/farmacología , Cromatina/efectos de los fármacos , Elementos de Facilitación Genéticos/efectos de los fármacos , Genoma Humano , Células HeLa , Humanos , Microscopía , Regiones Promotoras Genéticas/efectos de los fármacos
3.
BMC Bioinformatics ; 23(1): 116, 2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35366792

RESUMEN

BACKGROUND: Understanding the role of various factors in 3D genome organization is essential to determine their impact on shaping large-scale chromatin units such as euchromatin (A) and heterochromatin (B) compartments. At this level, chromatin compaction is extensively modulated when transcription and epigenetic profiles change upon cell differentiation and response to various external impacts. However, detailed analysis of chromatin contact patterns within and between compartments is complicated because of a lack of suitable computational methods. RESULTS: We developed a tool, Pentad, to perform calculation, visualisation and quantitative analysis of the average chromatin compartment from the Hi-C matrices in cis, trans, and specified genomic distances. As we demonstrated by applying Pentad to publicly available Hi-C datasets, it helps to reliably detect redistribution of contact frequency in the chromatin compartments and assess alterations in the compartment strength. CONCLUSIONS: Pentad is a simple tool for the analysis of changes in chromatin compartmentalization in various biological conditions. Pentad is freely available at https://github.com/magnitov/pentad .


Asunto(s)
Cromatina , Cromosomas , Genoma , Genómica/métodos
4.
Bioinformatics ; 36(17): 4560-4567, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492116

RESUMEN

MOTIVATION: The application of genome-wide chromosome conformation capture (3C) methods to prokaryotes provided insights into the spatial organization of their genomes and identified patterns conserved across the tree of life, such as chromatin compartments and contact domains. Prokaryotic genomes vary in GC content and the density of restriction sites along the chromosome, suggesting that these properties should be considered when planning experiments and choosing appropriate software for data processing. Diverse algorithms are available for the analysis of eukaryotic chromatin contact maps, but their potential application to prokaryotic data has not yet been evaluated. RESULTS: Here, we present a comparative analysis of domain calling algorithms using available single-microbe experimental data. We evaluated the algorithms' intra-dataset reproducibility, concordance with other tools and sensitivity to coverage and resolution of contact maps. Using RNA-seq as an example, we showed how orthogonal biological data can be utilized to validate the reliability and significance of annotated domains. We also suggest that in silico simulations of contact maps can be used to choose optimal restriction enzymes and estimate theoretical map resolutions before the experiment. Our results provide guidelines for researchers investigating microbes and microbial communities using high-throughput 3C assays such as Hi-C and 3C-seq. AVAILABILITY AND IMPLEMENTATION: The code of the analysis is available at https://github.com/magnitov/prokaryotic_cids. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Benchmarking , Programas Informáticos , Algoritmos , Cromosomas , Genoma , Reproducibilidad de los Resultados
5.
Bioinformatics ; 35(19): 3803-3811, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30825306

RESUMEN

MOTIVATION: The resistance of bacterial pathogens to antibiotics is one of the most important issues of modern health care. The human microbiota can accumulate resistance determinants and transfer them to pathogenic microbiota by means of horizontal gene transfer. Thus, it is important to develop methods of prediction and monitoring of antibiotics resistance in human populations. RESULTS: We present the agent-based VERA model, which allows simulation of the spread of pathogens, including the possible horizontal transfer of resistance determinants from a commensal microbiota community. The model considers the opportunity of residents to stay in the town or in a medical institution, have incorrect self-treatment, treatment with several antibiotics types and transfer and accumulation of resistance determinants from commensal microorganism to a pathogen. In this model, we have also created an assessment of optimum observation frequency of infection spread among the population. Investigating model behavior, we show a number of non-linear dependencies, including the exponential nature of the dependence of the total number of those infected on the average resistance of a pathogen. As the model infection, we chose infection with Shigella spp., though it could be applied to a wide range of other pathogens. AVAILABILITY AND IMPLEMENTATION: Source code and binaries VERA and VERA.viewer are freely available for download at github.com/lpenguin/microbiota-resistome. The code is written in Java, JavaScript and R for Linux platform. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Microbioma Gastrointestinal , Antibacterianos , Farmacorresistencia Microbiana , Transferencia de Gen Horizontal , Humanos , Análisis de Sistemas
6.
Proc Natl Acad Sci U S A ; 114(10): 2550-2555, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28202731

RESUMEN

Ultrahigh-throughput screening (uHTS) techniques can identify unique functionality from millions of variants. To mimic the natural selection mechanisms that occur by compartmentalization in vivo, we developed a technique based on single-cell encapsulation in droplets of a monodisperse microfluidic double water-in-oil-in-water emulsion (MDE). Biocompatible MDE enables in-droplet cultivation of different living species. The combination of droplet-generating machinery with FACS followed by next-generation sequencing and liquid chromatography-mass spectrometry analysis of the secretomes of encapsulated organisms yielded detailed genotype/phenotype descriptions. This platform was probed with uHTS for biocatalysts anchored to yeast with enrichment close to the theoretically calculated limit and cell-to-cell interactions. MDE-FACS allowed the identification of human butyrylcholinesterase mutants that undergo self-reactivation after inhibition by the organophosphorus agent paraoxon. The versatility of the platform allowed the identification of bacteria, including slow-growing oral microbiota species that suppress the growth of a common pathogen, Staphylococcus aureus, and predicted which genera were associated with inhibitory activity.


Asunto(s)
Butirilcolinesterasa/química , Ensayos Analíticos de Alto Rendimiento/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Paraoxon/química , Análisis de la Célula Individual/instrumentación , Antibiosis , Biodiversidad , Comunicación Celular , Emulsiones , Citometría de Flujo , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Aceites Volátiles/química , Fenotipo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Agua/química
7.
Bioinformatics ; 34(3): 434-444, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29092015

RESUMEN

Motivation: Antibiotic resistance is an important global public health problem. Human gut microbiota is an accumulator of resistance genes potentially providing them to pathogens. It is important to develop tools for identifying the mechanisms of how resistance is transmitted between gut microbial species and pathogens. Results: We developed MetaCherchant-an algorithm for extracting the genomic environment of antibiotic resistance genes from metagenomic data in the form of a graph. The algorithm was validated on a number of simulated and published datasets, as well as applied to new 'shotgun' metagenomes of gut microbiota from patients with Helicobacter pylori who underwent antibiotic therapy. Genomic context was reconstructed for several major resistance genes. Taxonomic annotation of the context suggests that within a single metagenome, the resistance genes can be contained in genomes of multiple species. MetaCherchant allows reconstruction of mobile elements with resistance genes within the genomes of bacteria using metagenomic data. Application of MetaCherchant in differential mode produced specific graph structures suggesting the evidence of possible resistance gene transmission within a mobile element that occurred as a result of the antibiotic therapy. MetaCherchant is a promising tool giving researchers an opportunity to get an insight into dynamics of resistance transmission in vivo basing on metagenomic data. Availability and implementation: Source code and binaries are freely available for download at https://github.com/ctlab/metacherchant. The code is written in Java and is platform-independent. Cotanct: ulyantsev@rain.ifmo.ru. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bacterias/genética , Farmacorresistencia Bacteriana/genética , Microbioma Gastrointestinal/genética , Metagenómica/métodos , Programas Informáticos , Algoritmos , Humanos
8.
BMC Genomics ; 19(1): 968, 2018 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-30587114

RESUMEN

BACKGROUND: Crohn's disease is associated with gut dysbiosis. Independent studies have shown an increase in the abundance of certain bacterial species, particularly Escherichia coli with the adherent-invasive pathotype, in the gut. The role of these species in this disease needs to be elucidated. METHODS: We performed a metagenomic study investigating the gut microbiota of patients with Crohn's disease. A metagenomic reconstruction of the consensus genome content of the species was used to assess the genetic variability. RESULTS: The abnormal shifts in the microbial community structures in Crohn's disease were heterogeneous among the patients. The metagenomic data suggested the existence of multiple E. coli strains within individual patients. We discovered that the genetic diversity of the species was high and that only a few samples manifested similarity to the adherent-invasive varieties. The other species demonstrated genetic diversity comparable to that observed in the healthy subjects. Our results were supported by a comparison of the sequenced genomes of isolates from the same microbiota samples and a meta-analysis of published gut metagenomes. CONCLUSIONS: The genomic diversity of Crohn's disease-associated E. coli within and among the patients paves the way towards an understanding of the microbial mechanisms underlying the onset and progression of the Crohn's disease and the development of new strategies for the prevention and treatment of this disease.


Asunto(s)
Enfermedad de Crohn/patología , Escherichia coli/genética , Microbioma Gastrointestinal , Variación Genética , Metagenómica/métodos , Análisis por Conglomerados , Enfermedad de Crohn/microbiología , Escherichia coli/aislamiento & purificación , Heces/microbiología , Genoma Bacteriano , Humanos , Mucosa Intestinal/microbiología
9.
Bioinformatics ; 33(14): 2205-2206, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28334267

RESUMEN

Abstract: We created ResistoMap­a Web-based interactive visualization of the presence of genetic determinants conferring resistance to antibiotics, biocides and heavy metals in human gut microbiota. ResistoMap displays the data on more than 1500 published gut metagenomes of world populations including both healthy subjects and patients. Multiparameter display filters allow visual assessment of the associations between the meta-data and proportions of resistome. The geographic map navigation layer allows to state hypotheses regarding the global trends of antibiotic resistance and correlates the gut resistome variations with the national clinical guidelines on antibiotics application. Availability and Implementation: ResistoMap was implemented using AngularJS, CoffeeScript, D3.js and TopoJSON. The tool is publicly available at http://resistomap.rcpcm.org. Contact: yarygin@phystech.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Farmacorresistencia Bacteriana , Microbioma Gastrointestinal/efectos de los fármacos , Microbiota/efectos de los fármacos , Programas Informáticos , Antibacterianos/farmacología , Humanos , Metagenoma
10.
Bioinformatics ; 32(18): 2760-7, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27259541

RESUMEN

MOTIVATION: High-throughput metagenomic sequencing has revolutionized our view on the structure and metabolic potential of microbial communities. However, analysis of metagenomic composition is often complicated by the high complexity of the community and the lack of related reference genomic sequences. As a start point for comparative metagenomic analysis, the researchers require efficient means for assessing pairwise similarity of the metagenomes (beta-diversity). A number of approaches were used to address this task, however, most of them have inherent disadvantages that limit their scope of applicability. For instance, the reference-based methods poorly perform on metagenomes from previously unstudied niches, while composition-based methods appear to be too abstract for straightforward interpretation and do not allow to identify the differentially abundant features. RESULTS: We developed MetaFast, an approach that allows to represent a shotgun metagenome from an arbitrary environment as a modified de Bruijn graph consisting of simplified components. For multiple metagenomes, the resulting representation is used to obtain a pairwise similarity matrix. The dimensional structure of the metagenomic components preserved in our algorithm reflects the inherent subspecies-level diversity of microbiota. The method is computationally efficient and especially promising for an analysis of metagenomes from novel environmental niches. AVAILABILITY AND IMPLEMENTATION: Source code and binaries are freely available for download at https://github.com/ctlab/metafast The code is written in Java and is platform independent (tested on Linux and Windows x86_64). CONTACT: ulyantsev@rain.ifmo.ru SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Metagenómica , Biología Computacional/métodos , Bases de Datos Genéticas , Metagenoma , Microbiota
11.
BMC Bioinformatics ; 17: 38, 2016 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-26774270

RESUMEN

BACKGROUND: A rapidly increasing flow of genomic data requires the development of efficient methods for obtaining its compact representation. Feature extraction facilitates classification, clustering and model analysis for testing and refining biological hypotheses. "Shotgun" metagenome is an analytically challenging type of genomic data - containing sequences of all genes from the totality of a complex microbial community. Recently, researchers started to analyze metagenomes using reference-free methods based on the analysis of oligonucleotides (k-mers) frequency spectrum previously applied to isolated genomes. However, little is known about their correlation with the existing approaches for metagenomic feature extraction, as well as the limits of applicability. Here we evaluated a metagenomic pairwise dissimilarity measure based on short k-mer spectrum using the example of human gut microbiota, a biomedically significant object of study. RESULTS: We developed a method for calculating pairwise dissimilarity (beta-diversity) of "shotgun" metagenomes based on short k-mer spectra (5 ≤ k ≤ 11). The method was validated on simulated metagenomes and further applied to a large collection of human gut metagenomes from the populations of the world (n=281). The k-mer spectrum-based measure was found to behave similarly to one based on mapping to a reference gene catalog, but different from one using a genome catalog. This difference turned out to be associated with a significant presence of viral reads in a number of metagenomes. Simulations showed limited impact of bacterial genetic variability as well as sequencing errors on k-mer spectra. Specific differences between the datasets from individual populations were identified. CONCLUSIONS: Our approach allows rapid estimation of pairwise dissimilarity between metagenomes. Though we applied this technique to gut microbiota, it should be useful for arbitrary metagenomes, even metagenomes with novel microbiota. Dissimilarity measure based on k-mer spectrum provides a wider perspective in comparison with the ones based on the alignment against reference sequence sets. It helps not to miss possible outstanding features of metagenomic composition, particularly related to the presence of an unknown bacteria, virus or eukaryote, as well as to technical artifacts (sample contamination, reads of non-biological origin, etc.) at the early stages of bioinformatic analysis. Our method is complementary to reference-based approaches and can be easily integrated into metagenomic analysis pipelines.


Asunto(s)
Metagenoma , Metagenómica/métodos , Mapeo Cromosómico , Análisis por Conglomerados , Biología Computacional , Simulación por Computador , Bases de Datos Genéticas , Microbioma Gastrointestinal/genética , Tracto Gastrointestinal/microbiología , Humanos , Modelos Moleculares , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
12.
J Proteome Res ; 15(11): 4030-4038, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27527821

RESUMEN

A gene-centric approach was applied for a large-scale study of expression products of a single chromosome. Transcriptome profiling of liver tissue and HepG2 cell line was independently performed using two RNA-Seq platforms (SOLiD and Illumina) and also by Droplet Digital PCR (ddPCR) and quantitative RT-PCR. Proteome profiling was performed using shotgun LC-MS/MS as well as selected reaction monitoring with stable isotope-labeled standards (SRM/SIS) for liver tissue and HepG2 cells. On the basis of SRM/SIS measurements, protein copy numbers were estimated for the Chromosome 18 (Chr 18) encoded proteins in the selected types of biological material. These values were compared with expression levels of corresponding mRNA. As a result, we obtained information about 158 and 142 transcripts for HepG2 cell line and liver tissue, respectively. SRM/SIS measurements and shotgun LC-MS/MS allowed us to detect 91 Chr 18-encoded proteins in total, while an intersection between the HepG2 cell line and liver tissue proteomes was ∼66%. In total, there were 16 proteins specifically observed in HepG2 cell line, while 15 proteins were found solely in the liver tissue. Comparison between proteome and transcriptome revealed a poor correlation (R2 ≈ 0.1) between corresponding mRNA and protein expression levels. The SRM and shotgun data sets (obtained during 2015-2016) are available in PASSEL (PASS00697) and ProteomeExchange/PRIDE (PXD004407). All measurements were also uploaded into the in-house Chr 18 Knowledgebase at http://kb18.ru/protein/matrix/416126 .


Asunto(s)
Cromosomas Humanos Par 18 , Perfilación de la Expresión Génica , Proteoma/análisis , Bases de Datos de Proteínas , Perfilación de la Expresión Génica/métodos , Células Hep G2 , Humanos , Hígado/química , Proteínas/análisis , Proteoma/genética , Proteómica/métodos , ARN Mensajero/análisis
13.
J Proteome Res ; 13(1): 183-90, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24328317

RESUMEN

We report the results obtained in 2012-2013 by the Russian Consortium for the Chromosome-centric Human Proteome Project (C-HPP). The main scope of this work was the transcriptome profiling of genes on human chromosome 18 (Chr 18), as well as their encoded proteome, from three types of biomaterials: liver tissue, the hepatocellular carcinoma-derived cell line HepG2, and blood plasma. The transcriptome profiling for liver tissue was independently performed using two RNaseq platforms (SOLiD and Illumina) and also by droplet digital PCR (ddPCR) and quantitative RT-PCR. The proteome profiling of Chr 18 was accomplished by quantitatively measuring protein copy numbers in the three types of biomaterial (the lowest protein concentration measured was 10(-13) M) using selected reaction monitoring (SRM). In total, protein copy numbers were estimated for 228 master proteins, including quantitative data on 164 proteins in plasma, 171 in the HepG2 cell line, and 186 in liver tissue. Most proteins were present in plasma at 10(8) copies/µL, while the median abundance was 10(4) and 10(5) protein copies per cell in HepG2 cells and liver tissue, respectively. In summary, for liver tissue and HepG2 cells a "transcriptoproteome" was produced that reflects the relationship between transcript and protein copy numbers of the genes on Chr 18. The quantitative data acquired by RNaseq, PCR, and SRM were uploaded into the "Update_2013" data set of our knowledgebase (www.kb18.ru) and investigated for linear correlations.


Asunto(s)
Cromosomas Humanos Par 18 , Hígado/metabolismo , Plasma , Proteoma , Transcriptoma , Células Hep G2 , Humanos , Reacción en Cadena de la Polimerasa/métodos
14.
BMC Genomics ; 15: 1108, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25511409

RESUMEN

BACKGROUND: Human hepatoma HepG2 cells are used as an in vitro model of the human liver. High-throughput transcriptomic sequencing is an advanced approach for assessing the functional state of a tissue or cell type. However, the influence of experimental factors, such as the sample preparation method and inter-laboratory variation, on the transcriptomic profile has not been evaluated. RESULTS: The whole-transcriptome sequencing of HepG2 cells was performed using the SOLiD platform and validated using droplet digital PCR. The gene expression profile was compared to the results obtained with the same sequencing method in another laboratory and using another sample preparation method. We also compared the transcriptomic profile HepG2 cells with that of liver tissue. Comparison of the gene expression profiles between the HepG2 cell line and liver tissue revealed the highest variation, followed by HepG2 cells submitted to two different sample preparation protocols. The lowest variation was observed between HepG2 cells prepared by two different laboratories using the same protocol. The enrichment analysis of the genes that were differentially expressed between HepG2 cells and liver tissue mainly revealed the cancer-associated gene signature of HepG2 cells and the activation of the response to chemical stimuli in the liver tissue. The HepG2 transcriptome obtained with the SOLiD platform was highly correlated with the published transcriptome obtained with the Illumina and Helicos platforms, with moderate correspondence to microarrays. CONCLUSIONS: In the present study, we assessed the influence of experimental factors on the HepG2 transcriptome and identified differences in gene expression between the HepG2 cell line and liver cells. These findings will facilitate robust experimental design in the fields of pharmacology and toxicology. Our results were supported by a comparative analysis with previous HepG2 gene expression studies.


Asunto(s)
Perfilación de la Expresión Génica , Hígado/metabolismo , Análisis por Conglomerados , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Transcriptoma
15.
J Proteome Res ; 12(1): 123-34, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23256950

RESUMEN

The final goal of the Russian part of the Chromosome-centric Human Proteome Project (C-HPP) was established as the analysis of the chromosome 18 (Chr 18) protein complement in plasma, liver tissue and HepG2 cells with the sensitivity of 10(-18) M. Using SRM, we have recently targeted 277 Chr 18 proteins in plasma, liver, and HepG2 cells. On the basis of the results of the survey, the SRM assays were drafted for 250 proteins: 41 proteins were found only in the liver tissue, 82 proteins were specifically detected in depleted plasma, and 127 proteins were mapped in both samples. The targeted analysis of HepG2 cells was carried out for 49 proteins; 41 of them were successfully registered using ordinary SRM and 5 additional proteins were registered using a combination of irreversible binding of proteins on CN-Br Sepharose 4B with SRM. Transcriptome profiling of HepG2 cells performed by RNAseq and RT-PCR has shown a significant correlation (r = 0.78) for 42 gene transcripts. A pilot affinity-based interactome analysis was performed for cytochrome b5 using analytical and preparative optical biosensor fishing followed by MS analysis of the fished proteins. All of the data on the proteome complement of the Chr 18 have been integrated into our gene-centric knowledgebase ( www.kb18.ru ).


Asunto(s)
Cromosomas Humanos Par 18 , Bases de Datos de Proteínas , Proteoma/análisis , Proteínas Sanguíneas/clasificación , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Cromosomas Humanos Par 18/genética , Cromosomas Humanos Par 18/metabolismo , Expresión Génica , Genoma Humano , Células Hep G2 , Humanos , Hígado/metabolismo , Espectrometría de Masas , Transcriptoma
16.
Microorganisms ; 11(4)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37110459

RESUMEN

The composition of the gut microbiome stores the imprints of prior infections and other impacts. COVID-19 can cause changes in inflammatory status that persist for a considerable time after infection ends. As the gut microbiome is closely associated with immunity and inflammation, the infection severity might be linked to its community structure dynamics. Using 16S rRNA sequencing of stool samples, we investigated the microbiome three months after the end of the disease/infection or SARS-CoV-2 contact in 178 post-COVID-19 patients and those who contacted SARS-CoV-2 but were not infected. The cohort included 3 groups: asymptomatic subjects (n = 48), subjects who contacted COVID-19 patients with no further infection (n = 46), and severe patients (n = 86). Using a novel compositional statistical algorithm (nearest balance) and the concept of bacterial co-occurrence clusters (coops), we compared microbiome compositions between the groups as well as with multiple categories of clinical parameters including: immunity, cardiovascular parameters and markers of endothelial dysfunction, and blood metabolites. Although a number of clinical indicators varied drastically across the three groups, no differences in microbiome features were identified between them at this follow-up point. However, there were multiple associations between the microbiome features and clinical data. Among the immunity parameters, the relative lymphocyte number was linked to a balance including 14 genera. Cardiovascular parameters were associated with up to four bacterial cooperatives. Intercellular adhesion molecule 1 was linked to a balance including ten genera and one cooperative. Among the blood biochemistry parameters, calcium was the only parameter associated with the microbiome via a balance of 16 genera. Our results suggest comparable recovery of the gut community structure in the post-COVID-19 period, independently of severity or infection status. The multiple identified associations of clinical analysis data with the microbiome provide hypotheses about the participation of specific taxa in regulating immunity and homeostasis of cardiovascular and other body systems in health, as well as their disruption in SARS-CoV-2 infections and other diseases.

17.
Commun Biol ; 6(1): 473, 2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120653

RESUMEN

Proximity ligation approaches, which are widely used to study the spatial organization of the genome, also make it possible to reveal patterns of RNA-DNA interactions. Here, we use RedC, an RNA-DNA proximity ligation approach, to assess the distribution of major RNA types along the genomes of E. coli, B. subtilis, and thermophilic archaeon T. adornatum. We find that (i) messenger RNAs preferentially interact with their cognate genes and the genes located downstream in the same operon, which is consistent with polycistronic transcription; (ii) ribosomal RNAs preferentially interact with active protein-coding genes in both bacteria and archaea, indicating co-transcriptional translation; and (iii) 6S noncoding RNA, a negative regulator of bacterial transcription, is depleted from active genes in E. coli and B. subtilis. We conclude that the RedC data provide a rich resource for studying both transcription dynamics and the function of noncoding RNAs in microbial organisms.


Asunto(s)
Escherichia coli , Regulación Bacteriana de la Expresión Génica , Escherichia coli/genética , ADN , Bacterias/genética , Operón
18.
J Fungi (Basel) ; 9(10)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37888276

RESUMEN

Ganoderma lucidum exhibits the ability to synthesize a diverse range of biologically active molecules with significant pharmaceutical potential, including xylomannan and fucogalactan, which have demonstrated antitumor activity. However, there exists considerable intra-species variability in the capacity to produce these metabolites at high concentrations, likely reflecting the high genomic diversity observed from a limited number of strains sequenced to date. We employed high-throughput shotgun sequencing to obtain the complete genome sequence of G. lucidum strain 5.1, which is distinguished by its remarkable xylomannan synthesis capabilities. Through the utilization of semi-automatic reordering based on conformation capture (Hi-C) data, we substantially enhanced the assembly process, resulting in the generation of 12 chromosome-level scaffolds with a cumulative length of 39 Mbp. By employing both de novo and homology-based approaches, we performed comprehensive annotation of the genome, thereby identifying a diverse repertoire of genes likely involved in polysaccharide biosynthesis. The genome sequence generated in this study serves as a valuable resource for elucidating the molecular mechanisms underlying the medicinal potential of Ganoderma species, discovering novel pharmaceutically valuable compounds, and elucidating the ecological mechanisms of the species. Furthermore, the chromosome contact map obtained for the first time for this species extends our understanding of 3D fungal genomics and provides insights into the functional and structural organization within the fungal kingdom.

19.
mSystems ; 7(3): e0015522, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35532211

RESUMEN

Linking microbiome composition obtained from metagenomic or 16S rRNA sequencing to various factors poses a real challenge. The compositional approach to such data is well described: a so-called isometric log-ratio (ILR) transform provides correct treatment of relative abundances. Most existing compositional methods differ in the particular choice of the transform. Although this choice does not influence the prediction of a model, it determines the subset of balances between groups of microbial taxa subsequently used for interpreting the composition shifts. We propose a method to interpret these shifts independently of the initial choice of ILR coordinates by the nearest single-balance shift. We describe here application of the method to regression, classification, and principal balance analysis of compositional data. Analytical treatment and cross-validation show that the approach provides the least-squares estimate of a single-balance shift associated with a factor with possible adjustment for covariates. As for classification and principal balance analysis, the nearest balance method provides results comparable to other compositional tools. Its advantages are the absence of assumptions about the number of taxa included in the balance and its low computational cost. The method is implemented in the R package NearestBalance. IMPORTANCE The method proposed here extends the range of compositional methods providing interpretation of classical statistical tools applied to data converted to the ILR coordinates. It provides a strictly optimal solution in several special cases. The approach is universally applicable to compositional data of any nature, including microbiome data sets.


Asunto(s)
Microbiota , ARN Ribosómico 16S/genética , Microbiota/genética , Metagenómica/métodos , Metagenoma , Grupo Social
20.
NPJ Biofilms Microbiomes ; 8(1): 77, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209276

RESUMEN

Maintaining equilibrium of the gut microbiome is crucial for human health. Diet represents an important and generally accessible natural channel of controlling the nutrients supply to the intestinal microorganisms. Although many studies showed that dietary interventions can specifically modulate gut microbiome composition, further progress of the approach is complicated by interindividual variability of the microbial community response. The reported causes of this variability include the baseline microbiome composition features, but it is unclear whether any of them are intervention-specific. Here, we applied a unified computational framework to investigate the variability of microbiome response measured as beta diversity in eight various dietary interventions using previously published 16S rRNA sequencing datasets. We revealed a number of baseline microbiome features which determine the microbiome response in an intervention-independent manner. One of the most stable associations, reproducible for different interventions and enterotypes, was a negative dependence of the response on the average number of genes per microorganism in the community-an indicator of the community functional redundancy. Meanwhile, many revealed microbiome response determinants were enterotype-specific. In Bact1 and Rum enterotypes, the response was negatively correlated with the baseline abundance of their main drivers. Additionally, we proposed a method for preliminary assessment of the microbiome response. Our study delineats the universal features determining microbiome response to diverse interventions. The proposed approach is promising for understanding the mechanisms of gut microbiome stability and improving the efficacy of personalised microbiome-tailored interventions.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Dieta , Heces , Humanos , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA