Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(18): 4612-4625.e14, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34352227

RESUMEN

The Middle East region is important to understand human evolution and migrations but is underrepresented in genomic studies. Here, we generated 137 high-coverage physically phased genome sequences from eight Middle Eastern populations using linked-read sequencing. We found no genetic traces of early expansions out-of-Africa in present-day populations but found Arabians have elevated Basal Eurasian ancestry that dilutes their Neanderthal ancestry. Population sizes within the region started diverging 15-20 kya, when Levantines expanded while Arabians maintained smaller populations that derived ancestry from local hunter-gatherers. Arabians suffered a population bottleneck around the aridification of Arabia 6 kya, while Levantines had a distinct bottleneck overlapping the 4.2 kya aridification event. We found an association between movement and admixture of populations in the region and the spread of Semitic languages. Finally, we identify variants that show evidence of selection, including polygenic selection. Our results provide detailed insights into the genomic and selective histories of the Middle East.


Asunto(s)
Genética de Población/historia , Genoma Humano , Animales , Cromosomas Humanos Y/genética , Bases de Datos Genéticas , Pool de Genes , Introgresión Genética , Geografía , Historia Antigua , Migración Humana , Humanos , Medio Oriente , Modelos Genéticos , Hombre de Neandertal/genética , Filogenia , Densidad de Población , Selección Genética , Análisis de Secuencia de ADN
2.
Cell ; 182(1): 189-199.e15, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32531199

RESUMEN

Structural variants contribute substantially to genetic diversity and are important evolutionarily and medically, but they are still understudied. Here we present a comprehensive analysis of structural variation in the Human Genome Diversity panel, a high-coverage dataset of 911 samples from 54 diverse worldwide populations. We identify, in total, 126,018 variants, 78% of which were not identified in previous global sequencing projects. Some reach high frequency and are private to continental groups or even individual populations, including regionally restricted runaway duplications and putatively introgressed variants from archaic hominins. By de novo assembly of 25 genomes using linked-read sequencing, we discover 1,643 breakpoint-resolved unique insertions, in aggregate accounting for 1.9 Mb of sequence absent from the GRCh38 reference. Our results illustrate the limitation of a single human reference and the need for high-quality genomes from diverse populations to fully discover and understand human genetic variation.


Asunto(s)
Genética de Población , Variación Estructural del Genoma , Alelos , Bases de Datos Genéticas , Dosificación de Gen , Duplicación de Gen , Frecuencia de los Genes/genética , Variación Genética , Genoma Humano , Humanos
3.
Nature ; 621(7978): 355-364, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612510

RESUMEN

The prevalence of highly repetitive sequences within the human Y chromosome has prevented its complete assembly to date1 and led to its systematic omission from genomic analyses. Here we present de novo assemblies of 43 Y chromosomes spanning 182,900 years of human evolution and report considerable diversity in size and structure. Half of the male-specific euchromatic region is subject to large inversions with a greater than twofold higher recurrence rate compared with all other chromosomes2. Ampliconic sequences associated with these inversions show differing mutation rates that are sequence context dependent, and some ampliconic genes exhibit evidence for concerted evolution with the acquisition and purging of lineage-specific pseudogenes. The largest heterochromatic region in the human genome, Yq12, is composed of alternating repeat arrays that show extensive variation in the number, size and distribution, but retain a 1:1 copy-number ratio. Finally, our data suggest that the boundary between the recombining pseudoautosomal region 1 and the non-recombining portions of the X and Y chromosomes lies 500 kb away from the currently established1 boundary. The availability of fully sequence-resolved Y chromosomes from multiple individuals provides a unique opportunity for identifying new associations of traits with specific Y-chromosomal variants and garnering insights into the evolution and function of complex regions of the human genome.


Asunto(s)
Cromosomas Humanos Y , Evolución Molecular , Humanos , Masculino , Cromosomas Humanos Y/genética , Genoma Humano/genética , Genómica , Tasa de Mutación , Fenotipo , Eucromatina/genética , Seudogenes , Variación Genética/genética , Cromosomas Humanos X/genética , Regiones Pseudoautosómicas/genética
4.
Cell ; 149(4): 737-9, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22579279

RESUMEN

Geneticists have long sought to identify the genetic changes that made us human, but pinpointing the functionally relevant changes has been challenging. Two papers in this issue suggest that partial duplication of SRGAP2, producing an incomplete protein that antagonizes the original, contributed to human brain evolution.

5.
Am J Hum Genet ; 108(4): 608-619, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33740458

RESUMEN

The number and distribution of recessive alleles in the population for various diseases are not known at genome-wide-scale. Based on 6,447 exome sequences of healthy, genetically unrelated Europeans of two distinct ancestries, we estimate that every individual is a carrier of at least 2 pathogenic variants in currently known autosomal-recessive (AR) genes and that 0.8%-1% of European couples are at risk of having a child affected with a severe AR genetic disorder. This risk is 16.5-fold higher for first cousins but is significantly more increased for skeletal disorders and intellectual disabilities due to their distinct genetic architecture.


Asunto(s)
Consanguinidad , Composición Familiar , Genes Recesivos/genética , Variación Genética/genética , Fenotipo , Población Blanca/genética , Estudios de Cohortes , Europa (Continente)/etnología , Exoma/genética , Femenino , Pruebas Genéticas , Salud , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Masculino
6.
Am J Hum Genet ; 107(1): 149-157, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32470374

RESUMEN

The Iron and Classical Ages in the Near East were marked by population expansions carrying cultural transformations that shaped human history, but the genetic impact of these events on the people who lived through them is little-known. Here, we sequenced the whole genomes of 19 individuals who each lived during one of four time periods between 800 BCE and 200 CE in Beirut on the Eastern Mediterranean coast at the center of the ancient world's great civilizations. We combined these data with published data to traverse eight archaeological periods and observed any genetic changes as they arose. During the Iron Age (∼1000 BCE), people with Anatolian and South-East European ancestry admixed with people in the Near East. The region was then conquered by the Persians (539 BCE), who facilitated movement exemplified in Beirut by an ancient family with Egyptian-Lebanese admixed members. But the genetic impact at a population level does not appear until the time of Alexander the Great (beginning 330 BCE), when a fusion of Asian and Near Easterner ancestry can be seen, paralleling the cultural fusion that appears in the archaeological records from this period. The Romans then conquered the region (31 BCE) but had little genetic impact over their 600 years of rule. Finally, during the Ottoman rule (beginning 1516 CE), Caucasus-related ancestry penetrated the Near East. Thus, in the past 4,000 years, three limited admixture events detectably impacted the population, complementing the historical records of this culturally complex region dominated by the elite with genetic insights from the general population.


Asunto(s)
ADN/genética , Genética de Población/historia , Egipto , Etnicidad/genética , Etnicidad/historia , Genoma Humano/genética , Haplotipos/genética , Historia Antigua , Migración Humana/historia , Humanos , Medio Oriente
7.
Nat Rev Genet ; 18(8): 485-497, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28555659

RESUMEN

The properties of the human Y chromosome - namely, male specificity, haploidy and escape from crossing over - make it an unusual component of the genome, and have led to its genetic variation becoming a key part of studies of human evolution, population history, genealogy, forensics and male medical genetics. Next-generation sequencing (NGS) technologies have driven recent progress in these areas. In particular, NGS has yielded direct estimates of mutation rates, and an unbiased and calibrated molecular phylogeny that has unprecedented detail. Moreover, the availability of direct-to-consumer NGS services is fuelling a rise of 'citizen scientists', whose interest in resequencing their own Y chromosomes is generating a wealth of new data.


Asunto(s)
Cromosomas Humanos Y/genética , Polimorfismo de Nucleótido Simple , Cromosomas Humanos Y/química , Genética de Población , Humanos , Filogenia , Análisis de Secuencia de ADN
8.
Mol Biol Evol ; 38(12): 5655-5663, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34464968

RESUMEN

A nonsense allele at rs1343879 in human MAGEE2 on chromosome X has previously been reported as a strong candidate for positive selection in East Asia. This premature stop codon causing ∼80% protein truncation is characterized by a striking geographical pattern of high population differentiation: common in Asia and the Americas (up to 84% in the 1000 Genomes Project East Asians) but rare elsewhere. Here, we generated a Magee2 mouse knockout mimicking the human loss-of-function mutation to study its functional consequences. The Magee2 null mice did not exhibit gross abnormalities apart from enlarged brain structures (13% increased total brain area, P = 0.0022) in hemizygous males. The area of the granular retrosplenial cortex responsible for memory, navigation, and spatial information processing was the most severely affected, exhibiting an enlargement of 34% (P = 3.4×10-6). The brain size in homozygous females showed the opposite trend of reduced brain size, although this did not reach statistical significance. With these insights, we performed human association analyses between brain size measurements and rs1343879 genotypes in 141 Chinese volunteers with brain MRI scans, replicating the sexual dimorphism seen in the knockout mouse model. The derived stop gain allele was significantly associated with a larger volume of gray matter in males (P = 0.00094), and smaller volumes of gray (P = 0.00021) and white (P = 0.0015) matter in females. It is unclear whether or not the observed neuroanatomical phenotypes affect behavior or cognition, but it might have been the driving force underlying the positive selection in humans.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Encéfalo , Proteínas/metabolismo , Caracteres Sexuales , Alelos , Animales , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Tamaño de los Órganos , Fenotipo
9.
Am J Hum Genet ; 104(5): 977-984, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31006515

RESUMEN

During the medieval period, hundreds of thousands of Europeans migrated to the Near East to take part in the Crusades, and many of them settled in the newly established Christian states along the Eastern Mediterranean coast. Here, we present a genetic snapshot of these events and their aftermath by sequencing the whole genomes of 13 individuals who lived in what is today known as Lebanon between the 3rd and 13th centuries CE. These include nine individuals from the "Crusaders' pit" in Sidon, a mass burial in South Lebanon identified from the archaeology as the grave of Crusaders killed during a battle in the 13th century CE. We show that all of the Crusaders' pit individuals were males; some were Western Europeans from diverse origins, some were locals (genetically indistinguishable from present-day Lebanese), and two individuals were a mixture of European and Near Eastern ancestries, providing direct evidence that the Crusaders admixed with the local population. However, these mixtures appear to have had limited genetic consequences since signals of admixture with Europeans are not significant in any Lebanese group today-in particular, Lebanese Christians are today genetically similar to local people who lived during the Roman period which preceded the Crusades by more than four centuries.


Asunto(s)
Etnicidad/genética , Etnicidad/historia , Flujo Génico , Genética de Población , Genoma Humano , Población Blanca/genética , Cromosomas Humanos Y/genética , ADN Mitocondrial/análisis , ADN Mitocondrial/genética , Femenino , Historia Antigua , Humanos , Líbano/etnología , Masculino
10.
Nature ; 538(7624): 238-242, 2016 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27654910

RESUMEN

High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.


Asunto(s)
Genoma Humano/genética , Genómica , Migración Humana/historia , Grupos Raciales/genética , África/etnología , Animales , Asia , Conjuntos de Datos como Asunto , Estonia , Europa (Continente) , Fósiles , Flujo Génico , Genética de Población , Heterocigoto , Historia Antigua , Humanos , Nativos de Hawái y Otras Islas del Pacífico/genética , Hombre de Neandertal/genética , Nueva Guinea , Dinámica Poblacional
11.
Nature ; 538(7624): 201-206, 2016 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27654912

RESUMEN

Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.


Asunto(s)
Variación Genética/genética , Genoma Humano/genética , Genómica , Tasa de Mutación , Filogenia , Grupos Raciales/genética , Animales , Australia , Población Negra/genética , Conjuntos de Datos como Asunto , Genética de Población , Historia Antigua , Migración Humana/historia , Humanos , Nativos de Hawái y Otras Islas del Pacífico/genética , Hombre de Neandertal/genética , Nueva Guinea , Análisis de Secuencia de ADN , Especificidad de la Especie , Factores de Tiempo
12.
Hum Mol Genet ; 28(16): 2785-2798, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31108506

RESUMEN

Human RBMY1 genes are located in four variable-sized clusters on the Y chromosome, expressed in male germ cells and possibly associated with sperm motility. We have re-investigated the mutational background and evolutionary history of the RBMY1 copy number distribution in worldwide samples and its relevance to sperm parameters in an Estonian cohort of idiopathic male factor infertility subjects. We estimated approximate RBMY1 copy numbers in 1218 1000 Genomes Project phase 3 males from sequencing read-depth, then chose 14 for valid ation by multicolour fibre-FISH. These fibre-FISH samples provided accurate calibration standards for the entire panel and led to detailed insights into population variation and mutational mechanisms. RBMY1 copy number worldwide ranged from 3 to 13 with a mode of 8. The two larger proximal clusters were the most variable, and additional duplications, deletions and inversions were detected. Placing the copy number estimates onto the published Y-SNP-based phylogeny of the same samples suggested a minimum of 562 mutational changes, translating to a mutation rate of 2.20 × 10-3 (95% CI 1.94 × 10-3 to 2.48 × 10-3) per father-to-son Y-transmission, higher than many short tandem repeat (Y-STRs), and showed no evidence for selection for increased or decreased copy number, but possible copy number stabilizing selection. An analysis of RBMY1 copy numbers among 376 infertility subjects failed to replicate a previously reported association with sperm motility and showed no significant effect on sperm count and concentration, serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone levels or testicular and semen volume. These results provide the first in-depth insights into the structural rearrangements underlying RBMY1 copy number variation across diverse human lineages.


Asunto(s)
Cromosomas Humanos Y , Variaciones en el Número de Copia de ADN , Evolución Molecular , Proteínas Nucleares/genética , Proteínas de Unión al ARN/genética , Hibridación Genómica Comparativa , Genoma Humano , Genómica/métodos , Humanos , Hibridación Fluorescente in Situ , Masculino , Familia de Multigenes , Mutación , Filogenia , Espermatozoides/metabolismo
13.
Hum Genet ; 140(2): 299-307, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32666166

RESUMEN

The genomes of present-day humans outside Africa originated almost entirely from a single out-migration ~ 50,000-70,000 years ago, followed by mixture with Neanderthals contributing ~ 2% to all non-Africans. However, the details of this initial migration remain poorly understood because no ancient DNA analyses are available from this key time period, and interpretation of present-day autosomal data is complicated due to subsequent population movements/reshaping. One locus, however, does retain male-specific information from this early period: the Y chromosome, where a detailed calibrated phylogeny has been constructed. Three present-day Y lineages were carried by the initial migration: the rare haplogroup D, the moderately rare C, and the very common FT lineage which now dominates most non-African populations. Here, we show that phylogenetic analyses of haplogroup C, D and FT sequences, including very rare deep-rooting lineages, together with phylogeographic analyses of ancient and present-day non-African Y chromosomes, all point to East/Southeast Asia as the origin 50,000-55,000 years ago of all known surviving non-African male lineages (apart from recent migrants). This observation contrasts with the expectation of a West Eurasian origin predicted by a simple model of expansion from a source near Africa, and can be interpreted as resulting from extensive genetic drift in the initial population or replacement of early western Y lineages from the east, thus informing and constraining models of the initial expansion.


Asunto(s)
Pueblo Asiatico/genética , Cromosomas Humanos Y/genética , África , ADN/genética , Emigración e Inmigración , Genética de Población/métodos , Genoma Humano/genética , Haplotipos/genética , Humanos , Masculino , Filogenia , Filogeografía/métodos
14.
Nature ; 517(7534): 327-32, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25470054

RESUMEN

Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.


Asunto(s)
Variación Genética/genética , Genética Médica/tendencias , Genoma Humano/genética , Genómica/tendencias , África , África del Sur del Sahara , Asia/etnología , Europa (Continente)/etnología , Humanos , Factores de Riesgo , Selección Genética/genética
15.
Am J Hum Genet ; 101(6): 977-984, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29129317

RESUMEN

From the eighth century onward, the Indian Ocean was the scene of extensive trade of sub-Saharan African slaves via sea routes controlled by Muslim Arab and Swahili traders. Several populations in present-day Pakistan and India are thought to be the descendants of such slaves, yet their history of admixture and natural selection remains largely undefined. Here, we studied the genome-wide diversity of the African-descent Makranis, who reside on the Arabian Sea coast of Pakistan, as well that of four neighboring Pakistani populations, to investigate the genetic legacy, population dynamics, and tempo of the Indian Ocean slave trade. We show that the Makranis are the result of an admixture event between local Baluch tribes and Bantu-speaking populations from eastern or southeastern Africa; we dated this event to ∼300 years ago during the Omani Empire domination. Levels of parental relatedness, measured through runs of homozygosity, were found to be similar across Pakistani populations, suggesting that the Makranis rapidly adopted the traditional practice of endogamous marriages. Finally, we searched for signatures of post-admixture selection at traits evolving under positive selection, including skin color, lactase persistence, and resistance to malaria. We demonstrate that the African-specific Duffy-null blood group-believed to confer resistance against Plasmodium vivax infection-was recently introduced to Pakistan through the slave trade and evolved adaptively in this P. vivax malaria-endemic region. Our study reconstructs the genetic and adaptive history of a neglected episode of the African Diaspora and illustrates the impact of recent admixture on the diffusion of adaptive traits across human populations.


Asunto(s)
Pueblo Asiatico/genética , Población Negra/genética , Sistema del Grupo Sanguíneo Duffy/genética , Personas Esclavizadas , Malaria Vivax/inmunología , Plasmodium vivax/inmunología , Dinámica Poblacional , Carácter Cuantitativo Heredable , Frecuencia de los Genes , Variación Genética/genética , Genética de Población , Humanos , Océano Índico , Pakistán/epidemiología
16.
Am J Hum Genet ; 101(2): 274-282, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28757201

RESUMEN

The Canaanites inhabited the Levant region during the Bronze Age and established a culture that became influential in the Near East and beyond. However, the Canaanites, unlike most other ancient Near Easterners of this period, left few surviving textual records and thus their origin and relationship to ancient and present-day populations remain unclear. In this study, we sequenced five whole genomes from ∼3,700-year-old individuals from the city of Sidon, a major Canaanite city-state on the Eastern Mediterranean coast. We also sequenced the genomes of 99 individuals from present-day Lebanon to catalog modern Levantine genetic diversity. We find that a Bronze Age Canaanite-related ancestry was widespread in the region, shared among urban populations inhabiting the coast (Sidon) and inland populations (Jordan) who likely lived in farming societies or were pastoral nomads. This Canaanite-related ancestry derived from mixture between local Neolithic populations and eastern migrants genetically related to Chalcolithic Iranians. We estimate, using linkage-disequilibrium decay patterns, that admixture occurred 6,600-3,550 years ago, coinciding with recorded massive population movements in Mesopotamia during the mid-Holocene. We show that present-day Lebanese derive most of their ancestry from a Canaanite-related population, which therefore implies substantial genetic continuity in the Levant since at least the Bronze Age. In addition, we find Eurasian ancestry in the Lebanese not present in Bronze Age or earlier Levantines. We estimate that this Eurasian ancestry arrived in the Levant around 3,750-2,170 years ago during a period of successive conquests by distant populations.


Asunto(s)
ADN Mitocondrial/genética , Etnicidad/genética , Genética de Población/métodos , Genoma Humano/genética , Variación Genética/genética , Historia Antigua , Humanos , Líbano , Desequilibrio de Ligamiento , Masculino , Población Blanca/genética
17.
BMC Genet ; 21(Suppl 1): 108, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33092534

RESUMEN

BACKGROUND: In the process of adaptation of humans to their environment, positive or adaptive selection has played a main role. Positive selection has, however, been under-studied in African populations, despite their diversity and importance for understanding human history. RESULTS: Here, we have used 119 available whole-genome sequences from five Ethiopian populations (Amhara, Oromo, Somali, Wolayta and Gumuz) to investigate the modes and targets of positive selection in this part of the world. The site frequency spectrum-based test SFselect was applied to idfentify a wide range of events of selection (old and recent), and the haplotype-based statistic integrated haplotype score to detect more recent events, in each case with evaluation of the significance of candidate signals by extensive simulations. Additional insights were provided by considering admixture proportions and functional categories of genes. We identified both individual loci that are likely targets of classic sweeps and groups of genes that may have experienced polygenic adaptation. We found population-specific as well as shared signals of selection, with folate metabolism and the related ultraviolet response and skin pigmentation standing out as a shared pathway, perhaps as a response to the high levels of ultraviolet irradiation, and in addition strong signals in genes such as IFNA, MRC1, immunoglobulins and T-cell receptors which contribute to defend against pathogens. CONCLUSIONS: Signals of positive selection were detected in Ethiopian populations revealing novel adaptations in East Africa, and abundant targets for functional follow-up.


Asunto(s)
Adaptación Biológica/genética , Genética de Población , Selección Genética , Población Negra/genética , Simulación por Computador , Etiopía , Ácido Fólico/metabolismo , Haplotipos , Humanos , Desequilibrio de Ligamiento , Aprendizaje Automático , Modelos Genéticos , Herencia Multifactorial , Pigmentación de la Piel/genética
18.
Mol Biol Evol ; 35(8): 1916-1933, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29796643

RESUMEN

We genotyped 738 individuals belonging to 49 populations from Nepal, Bhutan, North India, or Tibet at over 500,000 SNPs, and analyzed the genotypes in the context of available worldwide population data in order to investigate the demographic history of the region and the genetic adaptations to the harsh environment. The Himalayan populations resembled other South and East Asians, but in addition displayed their own specific ancestral component and showed strong population structure and genetic drift. We also found evidence for multiple admixture events involving Himalayan populations and South/East Asians between 200 and 2,000 years ago. In comparisons with available ancient genomes, the Himalayans, like other East and South Asian populations, showed similar genetic affinity to Eurasian hunter-gatherers (a 24,000-year-old Upper Palaeolithic Siberian), and the related Bronze Age Yamnaya. The high-altitude Himalayan populations all shared a specific ancestral component, suggesting that genetic adaptation to life at high altitude originated only once in this region and subsequently spread. Combining four approaches to identifying specific positively selected loci, we confirmed that the strongest signals of high-altitude adaptation were located near the Endothelial PAS domain-containing protein 1 and Egl-9 Family Hypoxia Inducible Factor 1 loci, and discovered eight additional robust signals of high-altitude adaptation, five of which have strong biological functional links to such adaptation. In conclusion, the demographic history of Himalayan populations is complex, with strong local differentiation, reflecting both genetic and cultural factors; these populations also display evidence of multiple genetic adaptations to high-altitude environments.


Asunto(s)
Adaptación Biológica , Altitud , Genoma Humano , Polimorfismo de Nucleótido Simple , Bután , Flujo Genético , Humanos , Nepal , Filogeografía , Dinámica Poblacional , Tibet
19.
Am J Hum Genet ; 98(5): 919-933, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27126583

RESUMEN

Short tandem repeats (STRs) are mutation-prone loci that span nearly 1% of the human genome. Previous studies have estimated the mutation rates of highly polymorphic STRs by using capillary electrophoresis and pedigree-based designs. Although this work has provided insights into the mutational dynamics of highly mutable STRs, the mutation rates of most others remain unknown. Here, we harnessed whole-genome sequencing data to estimate the mutation rates of Y chromosome STRs (Y-STRs) with 2-6 bp repeat units that are accessible to Illumina sequencing. We genotyped 4,500 Y-STRs by using data from the 1000 Genomes Project and the Simons Genome Diversity Project. Next, we developed MUTEA, an algorithm that infers STR mutation rates from population-scale data by using a high-resolution SNP-based phylogeny. After extensive intrinsic and extrinsic validations, we harnessed MUTEA to derive mutation-rate estimates for 702 polymorphic STRs by tracing each locus over 222,000 meioses, resulting in the largest collection of Y-STR mutation rates to date. Using our estimates, we identified determinants of STR mutation rates and built a model to predict rates for STRs across the genome. These predictions indicate that the load of de novo STR mutations is at least 75 mutations per generation, rivaling the load of all other known variant types. Finally, we identified Y-STRs with potential applications in forensics and genetic genealogy, assessed the ability to differentiate between the Y chromosomes of father-son pairs, and imputed Y-STR genotypes.


Asunto(s)
Cromosomas Humanos Y/genética , Genoma Humano , Haplotipos/genética , Repeticiones de Microsatélite/genética , Tasa de Mutación , Mutación/genética , Genotipo , Humanos , Masculino
20.
Am J Hum Genet ; 99(6): 1316-1324, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27889059

RESUMEN

Understanding human genetic diversity in Africa is important for interpreting the evolution of all humans, yet vast regions in Africa, such as Chad, remain genetically poorly investigated. Here, we use genotype data from 480 samples from Chad, the Near East, and southern Europe, as well as whole-genome sequencing from 19 of them, to show that many populations today derive their genomes from ancient African-Eurasian admixtures. We found evidence of early Eurasian backflow to Africa in people speaking the unclassified isolate Laal language in southern Chad and estimate from linkage-disequilibrium decay that this occurred 4,750-7,200 years ago. It brought to Africa a Y chromosome lineage (R1b-V88) whose closest relatives are widespread in present-day Eurasia; we estimate from sequence data that the Chad R1b-V88 Y chromosomes coalesced 5,700-7,300 years ago. This migration could thus have originated among Near Eastern farmers during the African Humid Period. We also found that the previously documented Eurasian backflow into Africa, which occurred ∼3,000 years ago and was thought to be mostly limited to East Africa, had a more westward impact affecting populations in northern Chad, such as the Toubou, who have 20%-30% Eurasian ancestry today. We observed a decline in heterozygosity in admixed Africans and found that the Eurasian admixture can bias inferences on their coalescent history and confound genetic signals from adaptation and archaic introgression.


Asunto(s)
Variación Genética/genética , Migración Humana/historia , Animales , Asia/etnología , Chad , Etiopía , Europa (Continente)/etnología , Flujo Génico/genética , Genética de Población , Genoma Humano/genética , Heterocigoto , Historia Antigua , Humanos , Desequilibrio de Ligamiento , Medio Oriente , Hombre de Neandertal/genética , Polimorfismo de Nucleótido Simple/genética , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA