Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 27(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36235300

RESUMEN

The current study focused on the laboratory approach in conjunction with computational methods for the synthesis and bioactivity assessment of unique 2-tetradecanoylimino-3-aryl-4-methyl-1,3-thiazolines (2a-2k). Processes included cyclizing 1-aroyl-3-arylthioureas with propan-2-one in the presence of trimethylamine and bromine. By using spectroscopic techniques and elemental analyses, structures were elucidated. To assess the electronic properties, density functional theory (DFT) calculations were made, while binding interactions of synthesized derivatives were studied by the molecular docking tool. Promising results were found during the evaluation of bioactivity of synthesized compounds against alkaline phosphatase. The drug likeliness score, an indicator used for any chemical entity posing as a drug, was within acceptable limits. The data suggested that most of the derivatives were potent inhibitors of alkaline phosphatase, which in turn may act as lead molecules to synthesize derivatives having desired pharmacological profiles for the treatment of specific diseases associated with abnormal levels of ALPs.


Asunto(s)
Fosfatasa Alcalina , Bromo , Fosfatasa Alcalina/metabolismo , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
2.
Bioorg Chem ; 109: 104707, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33639362

RESUMEN

1-(adamantane-1-carbonyl-3-(1-naphthyl)) thiourea (C22H24N2OS (4), was synthesized by the reaction of freshly prepared adamantane-1-carbonyl chloride from corresponding acid (3) with ammonium thiocyanate in 1:1 M ratio in dry acetone to afford the adamantane-1-carbonyl isothiocyanate (2) in situ followed by treatment with 1-naphthyl amine (3). The structure was established by elemental analyses, FTIR, 1H, 13C NMR and mass spectroscopy. The molecular and crystal structure were determined by single crystal X-ray analysis. It belongs to triclinic system P - 1 space group with a = 6.7832(5) Å, b = 11.1810(8) Å, c = 13.6660(10) Å, α = 105.941(6)°, ß = 103.730(6)°, γ = 104.562(6)°, Z = 2, V = 910.82(11) Å3. The naphthyl group is almost planar. In the crystal structure, intermolecular CH···O hydrogen bonds link the molecules into centrosymmetric dimers, enclosing R22(14) ring motifs, while the intramolecular NH···O hydrogen bonds enclose S(6) ring motifs, in which they may be effective in the stabilization of the structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H … H (59.3%), H … C/C … H (19.8%) and H … S/S … H (10.1%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. DFT, molecular docking and urease inhibition studies revealed stability and electron withdrawing nature of 4 as compared to DNA base pairs and residues of urease. The DNA binding results from docking, UV- visible spectroscopy, and viscosity studies indicated significant binding of 4 with the DNA via intercalation and groove binding. Further investigation of the compound was done on hepatocellular carcinoma; Huh-7 cell line as well as normal human embryonic kidney; Hek-293 cell line. The compound showed significant cytotoxic activity against Huh-7 cells in comparison to normal Hek-293 cells indicating selective cytotoxicity towards cancer cells.


Asunto(s)
Adamantano/química , Antineoplásicos/química , Antineoplásicos/farmacología , Tiourea/análogos & derivados , Ureasa/metabolismo , Adamantano/síntesis química , Adamantano/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Supervivencia Celular , Cristalografía por Rayos X , ADN/química , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Tiourea/síntesis química , Tiourea/química , Tiourea/farmacología , Ureasa/genética
3.
Luminescence ; 36(5): 1189-1197, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33759314

RESUMEN

In this present investigation, thiazolylcoumarin derivatives (5a-5k) were synthesized from thiosemicarbazide, ethyl acetoacetate, and naphthaldehyde through a multistep route. The formation of thiazolylcoumarin derivatives with bioactive scaffolds was confirmed through nuclear magnetic resonance spectroscopy. A solvatochromic study of synthesized thiazolylcoumarin derivatives was carried out using ultraviolet-visible methods for dimethylformamide (DMF), ethyl acetate, and ethanol solvents. The redox behaviour of as-synthesized thiazolylcoumarin derivatives (5a-5k) was examined in dimethyl sulphoxide by conducting an electrochemical study. Fluorescence properties of thiazolylcoumarin derivatives were studied in DMF, ethanol, and ethyl acetate to visualize the solvent effect on the emitting ability of thiazolylcoumarin derivatives.


Asunto(s)
Dimetilsulfóxido , Dimetilformamida , Etanol , Solventes , Espectrometría de Fluorescencia
4.
Molecules ; 24(5)2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30823444

RESUMEN

A small library of new drug-1,3,4-thiazidazole hybrid compounds (3a⁻3i) was synthesized, characterized, and assessed for their acetyl cholinesterase enzyme (AChE) inhibitory and free radical scavenging activities. The newly synthesized derivatives showed promising activities against AChE, especially compound 3b (IC50 18.1 ± 0.9 nM), which was the most promising molecule in the series, and was substantially more active than the reference drug (neostigmine methyl sulfate; IC50 2186.5 ± 98.0 nM). Kinetic studies were performed to elucidate the mode of inhibition of the enzyme, and the compounds showed mixed-type mechanisms for inhibiting AChE. The Ki of 3b (0.0031 µM) indicates that it can be very effective, even at low concentrations. Compounds 3a⁻3i all complied with Lipinski's Rule of Five, and showed high drug-likeness scores. The pharmacokinetic parameters revealed notable lead-like properties with insignificant liver and skin-penetrating effects. The structure⁻activity relationship (SAR) analysis indicated π⁻π interactions with key amino acid residues related to Tyr124, Trp286, and Tyr341.


Asunto(s)
Acetilcolinesterasa/química , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Tiadiazoles/química , Relación Estructura-Actividad
5.
BMC Chem ; 18(1): 47, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448974

RESUMEN

In the current study, Azo-Thiohydantoins derivatives were synthesized and characterized by using various spectroscopic techniques including FTIR, 1H-NMR, 13C-NMR, elemental and HRMS analysis. The compounds were evaluated for alkaline phosphatase activity and it was observed that among all the synthesized compounds, derivative 7e exhibited substantial inhibitory activity (IC50 = 0.308 ± 0.065 µM), surpassing the standard inhibitor (L-Phenyl alanine, IC50 = 80.2 ± 1.1 µM). Along with this, these derivatives were comprehensively examined regarding the electronic properties and reactivity of the synthesized compounds using Density Functional Theory (DFT) calculations, where the results were found very promising and the synthesized compound were found stable. After that, SwissADME evaluations highlighted compounds for their favorable physicochemical properties, including solubility and drug-likeness. Molecular docking exhibited the strong binding affinities of 7f and 7e derivatives with intestinal alkaline phosphatase (IAP), further supported by Molecular Dynamics (MD) simulations. This comprehensive integration of experimental and computational approaches sheds the light on the potential therapeutic applications of the synthesized compounds. By providing a detailed investigation of these aspects, this research opens the avenues for the development of novel pharmacologically active compounds with diverse applications.

6.
J Biomol Struct Dyn ; 41(3): 942-953, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34927557

RESUMEN

The compounds 2a-2h containing a thiazolidinone pharmacophore were synthesized via hetrerocylization of thiosemicarbazones with dimethyl acetylenedicarboxylate. The hybrid molecules were evaluated for anticancer activity against the human cell lines MCF-7, T47D (human breast adenocarcinoma) and HeLa (cervical cancer). Compounds 2c showed effective cytotoxicity on MCF-7 and HeLa (GI50 6.40 ± 0.10 µM/mL and GI5010.30 ± 1.09 µM/mL), and compound 2d also showed effective cytotoxicity against MCF-7 and HeLa cell lines i.e., (GI50 16.60 ± 0.21 µM/mL and GI50 15.02 ± 0.14 µM/mL). These findings were comparable to cisplatin (azane;dichloroplatinum) the standard drug (GI50 13.20 ± µM/mL and 15.10 µM/mL respectively) and consequently nominated for determination of the mode of cell death. The results revealed the cytotoxic effects of 2c and 2d by induction of apoptosis in MCF-7 and HeLa cell lines. Moreover the results were further supported by the Molecular Docking which predicts the binding interactions of the best anticancer ligands with Ribonucleotide reductase (RNR), which is essential enzyme required for de-novo synthesis of DNA precursors. Molecular dynamic simulations were also performed to determine the stability of protein-ligand complex under different simulated conditions. In addition, the computational studies including DFTs, ADMET properties suggested these compounds can act as lead molecules, for the synthesis of novel drug candidates for the treatment of specific cancer and its associated malignancies.


Asunto(s)
Antineoplásicos , Humanos , Células HeLa , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/química , Diseño de Fármacos , Proliferación Celular , Estructura Molecular , Línea Celular Tumoral
7.
BMC Chem ; 17(1): 95, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550776

RESUMEN

A new compound, C23H20BrN3OS, containing a quinoline-based iminothiazoline with a thiazoline ring, was synthesized and its crystal and molecular structures were analyzed through single crystal X-ray analysis. The compound belongs to the triclinic system P - 1 space group, with dimensions of a = 9.2304 (6) Å, b = 11.1780 (8) Å, c = 11.3006 (6) Å, α = 107.146 (5)°, ß = 93.701 (5)°, γ = 110.435 (6)°, Z = 2 and V = 1025.61 (12) Å3. The crystal structure showed that C-H···N and C-H···O hydrogen bond linkages, forming infinite double chains along the b-axis direction, and enclosing R22(14) and R22(16) ring motifs. The Hirshfeld surface analysis revealed that H…H (44.1%) and H…C/C…H (15.3%) interactions made the most significant contribution. The newly synthesized (Z)-4-bromo-N-(4-butyl-3 (quinolin-3-yl)thiazol-2(3H)-ylidene)benzamide, in comparison to oleanolic acid, exhibited more strong potential against elastase with an inhibition value of 1.21 µM. Additionally, the derivative was evaluated using molecular docking and molecular dynamics simulation studies, which showed that the quinoline based iminothiazoline derivative has the potential to be a novel inhibitor of elastase enzyme. Both theoretical and experimental findings suggested that this compound could have a number of biological activities.

8.
RSC Adv ; 13(48): 33826-33843, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38020022

RESUMEN

In the current study, a novel compound, bis(3-(2H-benzo[d][1,2,3]triazol-2-yl)-2-(prop-2-yn-1-yloxy)-5-(2,4,4-trimethylpentan-2-yl)phenyl)methane (TAJ1), has been synthesized by the reaction of 6,6'-methylenebis(2-(2H-benzo[d][1,2,3]triazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol) (1), propargyl bromide (2) and potassium carbonate. Spectroscopic (FTIR, 1H-NMR, 13C-NMR) and single-crystal assays proved the structure of the synthesized sample. XRD analysis confirmed the structure of the synthesized compound, showing that it possesses two aromatic parts linked via a -CH2 carbon with a bond angle of 108.40°. The cell line activity reported a percent growth reduction for different cell types (HeLa cells, MCF-7 cells, and Vero cells) under various treatment conditions (TAJ1, cisplatin, and doxorubicin) after 24 hours and 48 hours. The percent growth reduction represents a decrease in cell growth compared to a control condition. Furthermore, density functional theory (DFT) calculations were utilized to examine the frontier molecular orbitals (FMOs) and overall chemical reactivity descriptors of TAJ1. The molecule's chemical reactivity and stability were assessed by determining the HOMO-LUMO energy gap. TAJ1 displayed a HOMO energy level of -0.224 eV, a LUMO energy level of -0.065 eV, and a HOMO-LUMO gap of 0.159 eV. Additionally, molecular docking analysis was performed to assess the binding affinities of TAJ1 with various proteins. The compound TAJ1 showed potent interactions with NEK2, exhibiting -10.5 kcal mol-1 binding energy. Although TAJ1 has demonstrated interactions with NEK7, NEK9, TP53, NF-KAPPA-B, and caspase-3 proteins, suggesting its potential as a therapeutic agent, it is important to evaluate the conformational stability of the protein-ligand complex. Hence, molecular dynamics simulations were conducted to assess this stability. To analyze the complex, root mean square deviation (RMSD) and root mean square fluctuation analyses were performed. The results of these analyses indicate that the top hits obtained from the virtual screening possess the ability to act as effective NEK2 inhibitors. Therefore, further investigation of the inhibitory potential of these identified compounds using in vitro and in vivo approaches is recommended.

9.
PLoS One ; 17(10): e0271602, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36301939

RESUMEN

The aberrant expression of aldo keto reductases (AKR1B1 & AKR1B10) has been extensively studied in different types of cancer especially the colon cancer but a very few studies have yet been reported regarding the discovery of inhibitors for the treatment of colon cancer by targeting these isozymes. Therefore, there is a need of selective inhibitors of both targets for the eradication of colon cancer. Currently, the study is focused on the exploration of two quinolone compounds i.e., (S)-(6-Methoxyquinolin-4-yl)[(1S,2R,4S,5R)-5-vinylquinuclidin-2-yl]methanol (Quinidine) and (R)-(6-Methoxyquinolin-4-yl)[(1S,2S,4S,5R)-5-vinylquinuclidin-2-yl]methanol (Quinine) as the potential inhibitors of AKR1B1 and AKR1B10 via detailed in-silico approach. The structural properties including vibrational frequencies, dipole moment, polarizability and the optimization energies were estimated using density functional theory (DFT) calculations; where both compounds were found chemically reactive. After that, the optimized structures were used for the molecular docking studies and here quinidine was found more selective towards AKR1B1 and quinine exhibited maximum inhibition of AKR1B10. The results of molecular docking studies were validated by molecular dynamics simulations which provided the deep insight of stability of protein ligand complex. At the end, the ADMET properties were determined to demonstrate the druglikeness properties of both selected compounds. These findings suggested further exploration of both compounds at molecular level using different in-vivo and in-vitro approaches that will lead to the designing of potential inhibitor of AKR1B1/AKR1B10 for curing colon cancer and related malignancies.


Asunto(s)
Aldehído Reductasa , Aldo-Ceto Reductasas , Neoplasias del Colon , Quinidina , Quinina , Humanos , Aldehído Reductasa/antagonistas & inhibidores , Aldo-Ceto Reductasas/antagonistas & inhibidores , Neoplasias del Colon/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Quinidina/farmacología , Quinina/farmacología
10.
J Biomol Struct Dyn ; 39(18): 7035-7043, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-32762529

RESUMEN

Herein, we report synthesis of a set of benzothiazole-thiourea hybrids with aromatic and aliphatic side chains (BT1 to BT9) using an elegant synthetic strategy. The newly synthesized benzothiazole-thiourea conjugates were subjected to In-vitro tyrosinase inhibition and free radical scavenging activity. Majority of the compounds indicated inhibition considerably improved than the standard; compound (Kojic acid with IC50 = 16.8320 ± 1.1600 µM) BT2 with IC50 = 1.3431 ± 0.0254 µM was found to be the best inhibitor. A non-competitive mode of inhibition of BT2 was disclosed with Ki value of 2.8 µM. In order to study enzyme-inhibitor interactions SAR analysis molecular docking was carried out. The amino groups of thiourea were involved in hydrogen bonding with Glu322 showing the bond length of 1.74 and 2.70 Å, respectively. Moreover, the coupling of π-π was displayed between benzothiazole and benzene rings of His244 and His263, respectively. The outcome of this study might help to develop new inhibitors of melanogenesis, important for cosmetic and food products. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Agaricales , Inhibidores Enzimáticos/farmacología , Monofenol Monooxigenasa , Tiourea/farmacología , Benzotiazoles , Cinética , Simulación del Acoplamiento Molecular , Estructura Molecular , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Relación Estructura-Actividad
11.
RSC Adv ; 10(35): 20837-20851, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35517754

RESUMEN

The interest in the present study pertains to the development of a new compound based upon a benzimidazole thiourea moiety that has unique properties related to elastase inhibition, free radical scavenging activity and its DNA binding ability. The title compound, N-(4-(1H-benzo[d]imidazol-2-yl)phenyl)-3-benzoyl thiourea (C21H18N4O2SH2O:TUBC), was synthesized by reacting an acid chloride of benzoic acid with potassium thiocyanate (KSCN) along with the subsequent addition of 4-(1H-benzo[d]imidazol-2-yl)benzenamine via a one-pot three-step procedure. The structure of the resulting benzimidazole based thiourea was confirmed by spectroscopic techniques including FTIR, 1H-NMR, 13C-NMR and single crystal X-ray diffraction and further examined by Hirshfeld surface analysis. TUBC was also investigated by using both in silico methodology including molecular docking for elastase inhibition along with quantum chemical studies and in vitro experimental methodology utilizing elastase inhibition and free radical scavenging assay along with DNA binding experiments. Docking results confirmed that TUBC binding was within the active region of elastase. In comparison to the reference drug oleanolic acid, the low IC50 value of TUBC also indicated its high tendency towards elastase inhibition. TUBC scavenged 80% of DPPH˙ radicals which pointed towards its promising antioxidant activity. TUBC-DNA binding by DFT, docking, UV-visible spectroscopy and viscosity measurements revealed TUBC to be a potential drug candidate that binds spontaneously and reversibly with DNA via a mixed binding mode. All theoretical and experimental findings pointed to TUBC as a potential candidate for a variety of biological applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA