Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cryobiology ; 115: 104885, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38513997

RESUMEN

Human induced pluripotent stem (hiPS) cells have demonstrated promising potential in regenerative medical therapeutics. After successful clinical trials, the demand for hiPS cells has steadily increased. Therefore, the optimization of hiPS cell freezing processes for storage and transportation is essential. Here, we presented a computer-aided exploration of multiobjective optimal temperature profiles in slow freezing for hiPS cells. This study was based on a model that calculates cell survival rates after thawing, and the model was extended to evaluate cell potentials until 24 h after seeding. To estimate parameter values for this extension, freezing experiments were performed using constant cooling rates. Using quality and productivity indicators, we evaluated 16,206 temperature profiles using our model, and a promising profile was obtained. Finally, an experimental investigation of the profile was undertaken, and the contribution of the temperature profile to both quality and productivity was confirmed.


Asunto(s)
Supervivencia Celular , Criopreservación , Congelación , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/citología , Criopreservación/métodos , Temperatura , Simulación por Computador
2.
Biosci Biotechnol Biochem ; 87(10): 1229-1235, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37475694

RESUMEN

Studies have shown that the supplementation of anode-surrounding soil with zero-valent iron (ZVI) boosts power outputs from rice paddy-field microbial fuel cells (RP-MFCs). In order to understand mechanisms by which ZVI boosts outputs from RP-MFCs, the present study operated RP-MFCs with and without ZVI, and compositions of anode-associated bacteria and electrochemical properties of graphite anodes were analyzed after 3-month operation. Metabarcoding using 16S rRNA gene fragments showed that bacterial compositions did not largely differ among these RP-MFCs. Cyclic voltammetry showed improved electrochemical properties of anodes recovered from ZVI-supplemented RP-MFCs, and this was attributed to the adhesion of iron-oxide films onto graphite surfaces. Bioelectrochemical devices equipped with graphite anodes recovered from ZVI-supplemented RP-MFCs generated higher currents than those with fresh graphite anodes. These results suggest that ZVI is oxidized to iron oxides in paddy-field soil and adheres onto graphite anodes, resulting in the boost of power outputs from RP-MFCs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Grafito , Oryza , Fuentes de Energía Bioeléctrica/microbiología , Grafito/química , Oryza/genética , Polvos , ARN Ribosómico 16S/genética , Hierro , Bacterias/genética , Electrodos , Suelo
3.
J Sports Sci ; 40(18): 2072-2084, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36306377

RESUMEN

The ground reaction force (GRF) is known to produce tibial internal rotation loading associated with the stress in the anterior cruciate ligament (ACL). However, it is unclear whether the friction moment (FM; the moment due to horizontal shoe-floor friction, acting around the vertical axis at the GRF acting point) facilitates or restrains the effect of GRF-driven tibial rotation loading during cutting. The 45° cutting motions with forefoot/rearfoot strikes were captured simultaneously with GRF and FM data from 23 healthy males. The FM- and GRF-driven tibial rotation moments were calculated. Time-series correlation between FM- and GRF-driven tibial rotation moments and the orientation relationship among those moment vectors was investigated. The FM-driven tibial rotation moment negatively correlated with the GRF-driven one within the first 10% of stance phase. The peak regression slope value was -0.34 [SD 0.33] for forefoot and -1.64 [SD 1.76] for rearfoot strikes, showing significant difference from zero (SPM one-sample t-test, p<0.05). The FM-driven tibial "external" rotation moment counteracted the GRF-driven tibial "internal" rotation moment within first 10% of the stance phase in most trials, suggesting that the FM-driven tibial rotation moment potentially diminishes the effect of GRF-driven one and may reduce ACL injury risk during cutting.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Articulación de la Rodilla , Humanos , Masculino , Fricción , Fenómenos Biomecánicos , Ligamento Cruzado Anterior , Tibia , Atletas
4.
Sensors (Basel) ; 23(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36616928

RESUMEN

Motion sensors are widely used for gait analysis. The validity of commercial gait analysis systems is of great interest because calculating position/angle-level gait parameters potentially produces an error in the integration process of the motion sensor data; moreover, the validity of ORPHE ANALYTICS, a motion-sensor-based gait analysis system, has not yet been examined. We examined the validity of the gait parameters calculated using ORPHE ANALYTICS relative to those calculated using conventional optical motion capture. Nine young adults performed gait tasks on a treadmill at speeds of 2−12 km/h. The three-dimensional position data and acceleration and angular velocity data of the feet were collected. The gait parameters were calculated from motion sensor data using ORPHE ANALYTICS, and optical motion capture data. Intraclass correlation coefficients [ICC(2,1)] were calculated for relative validities. Eight items, namely, stride duration, stride length, stride frequency, stride speed, vertical height, stance phase duration, swing phase duration, and sagittal angleIC exhibited excellent relative validities [ICC(2,1) > 0.9]. In contrast, sagittal angleTO and frontal angleIC demonstrated good [ICC(2,1) = 0.892−0.833] and moderate relative validity [ICC(2,1) = 0.566−0.627], respectively. ORPHE ANALYTICS was found to exhibit excellent relative validities for most gait parameters. These results suggest its feasibility for gait analysis outside the laboratory setting.


Asunto(s)
Análisis de la Marcha , Carrera , Humanos , Adulto Joven , Reproducibilidad de los Resultados , Marcha , Caminata , Fenómenos Biomecánicos , Análisis Espacio-Temporal
5.
Gait Posture ; 109: 56-63, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38277765

RESUMEN

BACKGROUND: Ankle sprains are common and cause persistent ankle function reduction. To biomechanically evaluate the ankle function after ankle sprains, the ground reaction force (GRF) measurement during the single-legged landing had been used. However, previous studies focused on discrete features of vertical GRF (vGRF), which largely ignored vGRF waveform features that could better identify the ankle function. PURPOSE: To identify how the history of ankle sprain affect the vGRF waveform during the single-legged landing with unsupervised machine learning considering the time-series information of vGRF. METHODS: Eighty-seven currently healthy basketball athletes (12 athletes without ankle sprain, 49 athletes with bilateral, and 26 athletes with unilateral ankle sprain more than 6 months before the test day) performed single-legged landings from a 20 centimeters (cm) high box onto the force platform. Totally 518 trials vGRF data were collected from 87 athletes of 174 ankles, including 259 ankle sprain trials (from previous sprain ankles) and 259 non-ankle sprain trials (from without sprain ankles). The first 100 milliseconds (ms) vGRF waveforms after landing were extracted. Principal component analysis (PCA) was applied to the vGRF data, selecting 8 principal components (PCs) representing 96% of the information. Based on these 8 PCs, k-means method (k = 3) clustered the 518 trials into three clusters. Chi-square test assessed significant differences (p < 0.01) in the distribution of ankle sprain and non-ankle sprain trials among clusters. FINDINGS: The ankle sprain trials accounted for a significantly larger percentage (63.9%) in Cluster 3, which exhibited rapidly increased impulse vGRF waveforms with larger peaks in a short time. SIGNIFICANCE: PCA and k-means method for vGRF waveforms during single-legged landing identified that the history of previous ankle sprains caused a loss of ankle absorption ability lasting at least 6 months from an ankle sprain.


Asunto(s)
Traumatismos del Tobillo , Esguinces y Distensiones , Humanos , Aprendizaje Automático no Supervisado , Traumatismos del Tobillo/complicaciones , Extremidad Inferior , Tobillo , Esguinces y Distensiones/complicaciones
6.
J Sports Med Phys Fitness ; 64(6): 567-577, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38436594

RESUMEN

BACKGROUND: Anterior cruciate ligament injury frequently occurs in the deceleration with the knee-extended position. In addition, a rapid hip internal rotation is concomitantly observed. However, how the extended knee position induces the hip internal rotation is unclear. METHODS: Sixteen healthy participants performed the simulated foot impact task on the experimental chair. To vary the knee flexion angle, the following four-foot placement positions relative to the pelvis segment, i.e.: 1) near; 2) middle; 3) far; and 4) far + heel strike, were tested. The reflective marker positions and the ground reaction force (GRF) data were collected. The moment of inertia of the entire lower limb around its long axis as well as the peak hip internal rotation angular velocity were calculated and compared among four conditions (Wilcoxon Signed-Rank Test with Bonferroni correction, P<0.0083). RESULTS: As the knee extended from the near to far + heel strike condition, the moment of inertia of the entire lower limb significantly decreased and hip internal rotation angular velocity significantly increased (P<0.001). CONCLUSIONS: The extended knee position with far foot placement from torso reduces the inertial resistance of the entire lower limb around its long axis and is vulnerable to the hip internal rotation.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Pie , Humanos , Fenómenos Biomecánicos , Masculino , Rotación , Lesiones del Ligamento Cruzado Anterior/fisiopatología , Femenino , Pie/fisiología , Adulto Joven , Adulto , Extremidad Inferior/fisiología , Cadera/fisiología
7.
Membranes (Basel) ; 13(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37233568

RESUMEN

Baculovirus (Autographa californica multiple nucleopolyhedrovirus, AcMNPV) is an envelope virus possessing a fusogenic protein, GP64, which can be activated under weak acidic conditions close to those in endosomes. When the budded viruses (BVs) are bathed at pH 4.0 to 5.5, they can bind to liposome membranes with acidic phospholipids, and this results in membrane fusion. In the present study, using the caged-proton reagent 1-(2-nitrophenyl)ethyl sulfate, sodium salt (NPE-caged-proton), which can be uncaged by irradiation with ultraviolet light, we triggered the activation of GP64 by lowering the pH and observed membrane fusion on giant liposomes (giant unilamellar vesicles, GUVs) by visualizing the lateral diffusion of fluorescence emitted from a lipophilic fluorochrome (octadecyl rhodamine B chloride, R18) that stained viral envelopes of BVs. In this fusion, entrapped calcein did not leak from the target GUVs. The behavior of BVs prior to the triggering of membrane fusion by the uncaging reaction was closely monitored. BVs appeared to accumulate around a GUV with DOPS, implying that BVs preferred phosphatidylserine. The monitoring of viral fusion triggered by the uncaging reaction could be a valuable tool for revealing the delicate behavior of viruses affected by various chemical and biochemical environments.

8.
J Biomech ; 136: 111056, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398559

RESUMEN

Anterior cruciate ligament (ACL) injury occurs soon after foot-strike. Cutting with a shallow flexed knee is considered a risk factor for ACL injury; however, how foot-strike patterns (forefoot strike [FFS] vs. rearfoot strike [RFS]) affect sagittal plane knee kinetics and kinematics after a foot-strike, is unknown. This study aimed to investigate the effect of foot-strike patterns on the sagittal plane knee kinetics and kinematics during cutting. Twenty-three males performed 45° cutting under RFS and FFS conditions. The marker position data on the lower limb, and the ground reaction force (GRF) data were collected and time-normalized (0-100%) during the stance phase. The knee flexion angle, shank and GRF vector inclination angle relative to the global vertical axis, knee flexion/extension moment, and anterior/posterior component of GRF relative to the shank segment were calculated and compared between foot-strike patterns using statistical parametric mapping paired t-test (p < 0.0071). The knee flexion angle was smaller in RFS than in FFS in the initial 40% of the stance phase. In the RFS condition, the GRF vector was directed anteriorly to the shank segment, and the knee extension moment was produced by GRF in 0-7% of the stance phase, while these results were not observed in the FFS condition. These results suggest that compared to FFS, RFS induces a shallow flexed knee with an anterior-directed GRF component in the early stance phase and might potentially provoke a risk of ACL injury.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Carrera , Fenómenos Biomecánicos , Pie , Humanos , Cinética , Articulación de la Rodilla , Masculino , Carrera/lesiones
9.
Front Hum Neurosci ; 15: 809544, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975442

RESUMEN

Objectives: Runner's dystonia is a task-specific dystonia that occurs in the lower limbs and trunk, with diverse symptomatology. We aimed to identify the origin of a dystonic movement abnormality using combined three-dimensional kinematic analysis and electromyographic (EMG) assessment during treadmill running. Participant: A 20-year-old female runner who complained of right-foot collision with the left-leg during right-leg swing-phase, which mimicked right-ankle focal dystonia. Results: Kinematic and EMG assessment of her running motion was performed, which showed a significant drop of the left pelvis during right-leg stance-phase, and a simultaneous increase of right hip adductor muscle activity. This resulted in a pronounced adduction of the entire right lower limb with respect to the pelvis segment. Trajectories of right foot were seen to encroach upon left-leg area. Discussion: These findings suggested that the symptom of this runner was most likely a form of segmental dystonia originating from an impaired control of hip and pelvis, rather than a distal focal ankle dystonia. Conclusion: We conclude that, for individualized symptom assessment, deconstructing the symptom origin from its secondary compensatory movement is crucial for characterizing dystonia. Kinematic and EMG evaluation will therefore be a prerequisite to distinguish symptom origin from secondary compensatory movement.

10.
PLoS One ; 8(12): e81626, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24339948

RESUMEN

The colonial microalga Botryococcus braunii accumulates large quantities of hydrocarbons mainly in the extracellular space; most other oleaginous microalgae store lipids in the cytoplasm. Botryococcus braunii is classified into three principal races (A, B, and L) based on the types of hydrocarbons. Race B has attracted the most attention as an alternative to petroleum by its higher hydrocarbon contents than the other races and its hydrocarbon components, botryococcenes and methylsqualenes, both can be readily converted into biofuels. We studied race B using fluorescence and electron microscopy, and clarify the stage when extracellular hydrocarbon accumulation occurs during the cell cycle, in a correlation with the behavior and structural changes of the lipid bodies and discussed development of the algal colony. New accumulation of lipids on the cell surface occurred after cell division in the basolateral region of daughter cells. While lipid bodies were observed throughout the cell cycle, their size and inclusions were dynamically changing. When cells began dividing, the lipid bodies increased in size and inclusions until the extracellular accumulation of lipids started. Most of the lipids disappeared from the cytoplasm concomitant with the extracellular accumulation, and then reformed. We therefore hypothesize that lipid bodies produced during the growth of B. braunii are related to lipid secretion. New lipids secreted at the cell surface formed layers of oil droplets, to a maximum depth of six layers, and fused to form flattened, continuous sheets. The sheets that combined a pair of daughter cells remained during successive cellular divisions and the colony increased in size with increasing number of cells.


Asunto(s)
Chlorophyta/citología , Chlorophyta/metabolismo , Citoplasma/metabolismo , Hidrocarburos/metabolismo , Metabolismo de los Lípidos , Ciclo Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Celulasa/metabolismo , Chlorophyta/efectos de los fármacos , Citoplasma/efectos de los fármacos , Hexanos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA