RESUMEN
OBJECTIVE: N6-isopentenyladenosine (iPA) is an intermediate of the mevalonate pathway that exhibits various anti-cancer effects. However, studies on its anti-inflammatory activity are scarce and underlying molecular mechanisms are unknown. Therefore, we aimed to investigate the ability of iPA to exert anti-inflammatory effects in the human cystic fibrosis (CF) cell model of exacerbated inflammation. MATERIALS AND METHODS: TNFα-stimulated CF cells CuFi-1 and its normal counterpart NuLi-1 were pre-treated with increasing concentrations of iPA and cell viability and proliferation were assessed by MTT and BrdU assays. The effect of iPA on IL-8 and RANTES secretion was determined by ELISA, and the activation and expression of signaling molecules and selenoproteins were studied by Western blot. To assess the direct effect of iPA on NFκB activity, luciferase assay was performed on TNFα-stimulated HEK293/T cells transfected with a NFκB reporter plasmid. RESULTS: We demonstrated for the first time that iPA prevents IL-8 and RANTES release in TNFα-stimulated CF cells and this effect is mediated by increasing the expression of the direct NFκB inhibitor IκBα and decreasing the levels of STAT3. Consistent with this, we showed that iPA inhibited TNFα-mediated NFκB activation in HEK/293T cells. Finally, we also found that iPA improved the levels of glutathione peroxidase 1 and thioredoxin reductase 1 only in CF cells suggesting its ability to maintain sufficient expression of these anti-oxidant selenoproteins. CONCLUSIONS: Our findings indicate that iPA can exert anti-inflammatory activity especially in the cases of excessive inflammatory response as in CF.
Asunto(s)
Antiinflamatorios/farmacología , Fibrosis Quística/metabolismo , Isopenteniladenosina/farmacología , FN-kappa B/metabolismo , Factor de Transcripción STAT3/metabolismo , Línea Celular , Supervivencia Celular , Quimiocina CCL5/metabolismo , Fibrosis Quística/enzimología , Glutatión Peroxidasa/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , Interleucina-8/metabolismo , Isopenteniladenosina/toxicidad , FN-kappa B/antagonistas & inhibidores , Factor de Transcripción STAT3/antagonistas & inhibidores , Transducción de Señal , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Factor de Necrosis Tumoral alfa/farmacologíaRESUMEN
The innate immune system is a fundamental defense weapon of fish, especially during early stages of development when acquired immunity is still far from being completely developed. The present study aims at looking into ontogeny of innate immune system in the brown trout, Salmo trutta, using RT-PCR based approach. Total RNA extracted from unfertilized and fertilized eggs and hatchlings at 0, 1 h and 1, 2, 3, 4, 5, 6, 7 weeks post-fertilization was subjected to RT-PCR using self-designed primers to amplify some innate immune relevant genes (TNF-α, IL-1ß, TGF-ß and lysozyme c-type). The constitutive expression of ß-actin was detected in all developmental stages. IL-1ß and TNF-α transcripts were detected from 4 week post-fertilization onwards, whereas TGF-ß transcript was detected only from 7 week post-fertilization onwards. Lysozyme c-type transcript was detected early from unfertilized egg stage onwards. Similarly, tissues such as muscle, ovary, heart, brain, gill, testis, liver, intestine, spleen, skin, posterior kidney, anterior kidney and blood collected from adult brown trout were subjected to detection of all selected genes by RT-PCR. TNF-α and lysozyme c-type transcripts were expressed in all tissues. IL-1ß and TGF-ß transcripts were expressed in all tissues except for the brain and liver, respectively. Taken together, our results show a spatial-temporal expression of some key innate immune-related genes, improving the basic knowledge of the function of innate immune system at early stage of brown trout.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica/inmunología , Regulación de la Expresión Génica/fisiología , Inmunidad Innata/fisiología , Trucha/metabolismo , Animales , Secuencia de Bases , Citocinas/genética , Citocinas/metabolismo , Inmunidad Innata/genética , Datos de Secuencia Molecular , ARN/genética , ARN/metabolismo , Alineación de Secuencia , Trucha/genéticaRESUMEN
AIMS: To further explore the anti-inflammatory properties of d-Limonene. MAIN METHODS: A rat model was used to compare evolution of TNBS (2,5,6-trinitrobenzene sulfonic acid)-induced colitis after oral feeding with d-Limonene compared to ibuprofen. Peripheral levels of TNF-α (Tumor Necrosis Factor alpha) were assessed in all animals. Cell cultures of fibroblasts and enterocytes were used to test the effect of d-Limonene respectively on TNFα-induced NF-κB (nuclear factor-kappa B) translocation and epithelial resistance. Finally, plasmatic inflammatory markers were examined in an observational study of diet supplementation with d-Limonene-containing orange peel extract (OPE) in humans. KEY FINDINGS: Administered per os at a dose of 10mg/kg p.o., d-Limonene induced a significant reduction of intestinal inflammatory scores, comparable to that induced by ibuprofen. Moreover, d-Limonene-fed rats had significantly lowered serum concentrations of TNF-α compared to untreated TNBS-colitis rats. The anti-inflammatory effect of d-Limonene also involved inhibition of TNFα-induced NF-κB translocation in fibroblast cultures. The application of d-Limonene on colonic HT-29/B6 cell monolayers increased epithelial resistance. Finally, inflammatory markers, especially peripheral IL-6, markedly decreased upon OPE supplementation of elderly healthy subjects submitted or not to 56 days of dietary supplementation with OPE. SIGNIFICANCE: In conclusion, d-Limonene indeed demonstrates significant anti-inflammatory effects both in vivo and in vitro. Protective effects on the epithelial barrier and decreased cytokines are involved, suggesting a beneficial role of d-Limonene as diet supplement in reducing inflammation.
Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Colitis/tratamiento farmacológico , Colitis/patología , Ciclohexenos/administración & dosificación , Suplementos Dietéticos , Terpenos/administración & dosificación , Administración Oral , Anciano , Anciano de 80 o más Años , Animales , Femenino , Células HT29 , Humanos , Limoneno , Masculino , Ratones , Ratas , Ratas WistarRESUMEN
A critical role of the FOX transcription factors in the development of different tissues has been shown. Among these genes, FOXN1 encodes a protein whose alteration is responsible for the Nude/SCID phenotype. Recently, our group reported on a human Nude/SCID fetus, which also had severe neural tube defects, namely anencephaly and spina bifida. This led to hypothesize that FOXN1 could have a role in the early stages of central nervous system development. Here we report on a second fetus that carried the R255X homozygous mutation in FOXN1 that has been examined for the presence of CNS developmental anomalies. At 16 postmenstrual weeks of gestation, the abdominal ultrasonography of the Nude/SCID fetus revealed a morphologically normal brain, but with absence of cavum septi pellucidi (CSP). Moreover, after confirmation of the diagnosis of severe Nude/SCID, the fetus was further examined postmortem and a first gross examination revealed an enlargement of the interhemispheric fissure. Subsequently, a magnetic resonance imaging failed to identify the corpus callosum in any section. In conclusion, our observations did not reveal any gross abnormalities in the CNS anatomy of the Nude/SCID fetus, but alteration of the corpus callosum, suggesting that FOXN1 alterations could play a role as a cofactor in CNS development in a similar fashion to other FOX family members.