Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chem Rec ; 24(3): e202300322, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38279622

RESUMEN

The chemical modification of biopolymers like peptides and proteins is a key technology to access vaccines and pharmaceuticals. Similarly, the tunable derivatization of individual amino acids is important as they are key building blocks of biomolecules, bioactive natural products, synthetic polymers, and innovative materials. The high diversity of functional groups present in amino acid-based molecules represents a significant challenge for their selective derivatization Recently, visible light-mediated transformations have emerged as a powerful strategy for achieving chemoselective biomolecule modification. This technique offers numerous advantages over other methods, including a higher selectivity, mild reaction conditions and high functional-group tolerance. This review provides an overview of the most recent methods covering the photoinduced modification for single amino acids and site-selective functionalization in peptides and proteins under mild and even biocompatible conditions. Future challenges and perspectives are discussed beyond the diverse types of photocatalytic transformations that are currently available.


Asunto(s)
Aminoácidos , Proteínas , Aminoácidos/química , Proteínas/química , Péptidos/química , Polímeros
2.
J Org Chem ; 88(10): 6407-6419, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-36576774

RESUMEN

Herein, we report a rapid and scalable continuous-flow photocatalytic approach for the carbamoylation of nitrones. This protocol makes use of readily available 4-amido-1,4 dihydropyridines as carbamoyl radical precursors. The scope of this transformation exhibits high compatibility with complex structures containing amino acids, peptides, and glycosides. Importantly, the developed method allows a photocatalytic synthetic strategy in combination with flow conditions, maximizing the potential and efficiency for the synthesis of valuable α-(N-hydroxy)amino amides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA