Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38542102

RESUMEN

The preBötzinger complex (preBötC) and the Bötzinger complex (BötC) are interconnected neural circuits that are involved in the regulation of breathing in mammals. Fast inhibitory neurotransmission is known to play an important role in the interaction of these two regions. Moreover, the corelease of glycine and GABA has been described in the respiratory network, but the contribution of the individual neurotransmitter in different pathways remains elusive. In sagittal brainstem slices of neonatal mice, we employed a laser point illumination system to activate glycinergic neurons expressing channelrhodopsin-2 (ChR2). This approach allowed us to discern the contribution of glycine and GABA to postsynaptic currents of individual whole-cell clamped neurons in the preBötC and BötC through the application of glycine and GABA receptor-specific antagonists. In more than 90% of the recordings, both transmitters contributed to the evoked IPSCs, with the glycinergic component being larger than the GABAergic component. The GABAergic component appeared to be most prominent when stimulation and recording were both performed within the preBötC. Taken together, our data suggest that GABA-glycine cotransmission is the default mode in the respiratory network of neonatal mice with regional differences that may be important in tuning the network activity.


Asunto(s)
Glicina , Ácido gamma-Aminobutírico , Ratones , Animales , Glicina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Transmisión Sináptica/fisiología , Neuronas/metabolismo , Antagonistas del GABA/farmacología , Mamíferos/metabolismo
2.
Allergy ; 76(6): 1718-1730, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33037672

RESUMEN

BACKGROUND: Common ragweed has been spreading as a neophyte in Europe. Elevated CO2 levels, a hallmark of global climate change, have been shown to increase ragweed pollen production, but their effects on pollen allergenicity remain to be elucidated. METHODS: Ragweed was grown in climate-controlled chambers under normal (380 ppm, control) or elevated (700 ppm, based on RCP4.5 scenario) CO2 levels. Aqueous pollen extracts (RWE) from control- or CO2 -pollen were administered in vivo in a mouse model for allergic disease (daily for 3-11 days, n = 5) and employed in human in vitro systems of nasal epithelial cells (HNECs), monocyte-derived dendritic cells (DCs), and HNEC-DC co-cultures. Additionally, adjuvant factors and metabolites in control- and CO2 -RWE were investigated using ELISA and untargeted metabolomics. RESULTS: In vivo, CO2 -RWE induced stronger allergic lung inflammation compared to control-RWE, as indicated by lung inflammatory cell infiltrate and mediators, mucus hypersecretion, and serum total IgE. In vitro, HNECs stimulated with RWE increased indistinctively the production of pro-inflammatory cytokines (IL-8, IL-1ß, and IL-6). In contrast, supernatants from CO2 -RWE-stimulated HNECs, compared to control-RWE-stimulated HNECS, significantly increased TNF and decreased IL-10 production in DCs. Comparable results were obtained by stimulating DCs directly with RWEs. The metabolome analysis revealed differential expression of secondary plant metabolites in control- vs CO2 -RWE. Mixes of these metabolites elicited similar responses in DCs as compared to respective RWEs. CONCLUSION: Our results indicate that elevated ambient CO2 levels elicit a stronger RWE-induced allergic response in vivo and in vitro and that RWE increased allergenicity depends on the interplay of multiple metabolites.


Asunto(s)
Ambrosia , Dióxido de Carbono , Alérgenos , Europa (Continente) , Polen
3.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34575911

RESUMEN

Schizophrenia is a severe neuropsychiatric disorder, and its etiology remains largely unknown. Environmental factors have been reported to play roles in the pathogenesis of schizophrenia, and one of the major environmental factors identified for this disorder is psychosocial stress. Several studies have suggested that stressful life events, as well as the chronic social stress associated with city life, may lead to the development of schizophrenia. The other factor is the gut-brain axis. The composition of the gut microbiome and alterations thereof may affect the brain and may lead to schizophrenia. The main interest of this review article is in overviewing the major recent findings on the effects of stress and the gut-brain axis, as well as their possible bidirectional effects, in the pathogenesis of schizophrenia.


Asunto(s)
Encéfalo/metabolismo , Susceptibilidad a Enfermedades , Retroalimentación Fisiológica , Tracto Gastrointestinal/metabolismo , Esquizofrenia/etiología , Esquizofrenia/metabolismo , Estrés Psicológico/complicaciones , Animales , Encéfalo/fisiopatología , Microbioma Gastrointestinal , Humanos
4.
J Neurochem ; 151(2): 139-165, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31318452

RESUMEN

The past 20 years have resulted in unprecedented progress in understanding brain energy metabolism and its role in health and disease. In this review, which was initiated at the 14th International Society for Neurochemistry Advanced School, we address the basic concepts of brain energy metabolism and approach the question of why the brain has high energy expenditure. Our review illustrates that the vertebrate brain has a high need for energy because of the high number of neurons and the need to maintain a delicate interplay between energy metabolism, neurotransmission, and plasticity. Disturbances to the energetic balance, to mitochondria quality control or to glia-neuron metabolic interaction may lead to brain circuit malfunction or even severe disorders of the CNS. We cover neuronal energy consumption in neural transmission and basic ('housekeeping') cellular processes. Additionally, we describe the most common (glucose) and alternative sources of energy namely glutamate, lactate, ketone bodies, and medium chain fatty acids. We discuss the multifaceted role of non-neuronal cells in the transport of energy substrates from circulation (pericytes and astrocytes) and in the supply (astrocytes and microglia) and usage of different energy fuels. Finally, we address pathological consequences of disrupted energy homeostasis in the CNS.


Asunto(s)
Encéfalo/metabolismo , Metabolismo Energético/fisiología , Neuroquímica/educación , Estudiantes , Animales , Astrocitos/metabolismo , Congresos como Asunto/tendencias , Humanos , Neuroglía/metabolismo , Neuronas/metabolismo
5.
J Neurochem ; 139 Suppl 2: 91-114, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26525923

RESUMEN

Matrix metalloproteinase-9 (MMP-9) is a member of the metzincin family of mostly extracellularly operating proteases. Despite the fact that all of these enzymes might be target promiscuous, with largely overlapping catalogs of potential substrates, MMP-9 has recently emerged as a major and apparently unique player in brain physiology and pathology. The specificity of MMP-9 may arise from its very local and time-restricted actions, even when released in the brain from cells of various types, including neurons, glia, and leukocytes. In fact, the quantity of MMP-9 is very low in the naive brain, but it is markedly activated at the levels of enzymatic activity, protein abundance, and gene expression following various physiological stimuli and pathological insults. Neuronal MMP-9 participates in synaptic plasticity by controlling the shape of dendritic spines and function of excitatory synapses, thus playing a pivotal role in learning, memory, and cortical plasticity. When improperly unleashed, MMP-9 contributes to a large variety of brain disorders, including epilepsy, schizophrenia, autism spectrum disorder, brain injury, stroke, neurodegeneration, pain, brain tumors, etc. The foremost mechanism of action of MMP-9 in brain disorders appears to be its involvement in immune/inflammation responses that are related to the enzyme's ability to process and activate various cytokines and chemokines, as well as its contribution to blood-brain barrier disruption, facilitating the extravasation of leukocytes into brain parenchyma. However, another emerging possibility (i.e., the control of MMP-9 over synaptic plasticity) should not be neglected. The translational potential of MMP-9 has already been recognized in both the diagnosis and treatment domains. The most striking translational aspect may be the discovery of MMP-9 up-regulation in a mouse model of Fragile X syndrome, quickly followed by human studies and promising clinical trials that have sought to inhibit MMP-9. With regard to diagnosis, suggestions have been made to use MMP-9 alone or combined with tissue inhibitor of matrix metalloproteinase-1 or brain-derived neurotrophic factor as disease biomarkers. MMP-9, through cleavage of specific target proteins, plays a major role in synaptic plasticity and neuroinflammation, and by those virtues contributes to brain physiology and a host of neurological and psychiatric disorders. This article is part of the 60th Anniversary special issue.


Asunto(s)
Encefalopatías/enzimología , Encéfalo/enzimología , Encéfalo/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Biosíntesis de Proteínas/fisiología , Animales , Biomarcadores/metabolismo , Encefalopatías/genética , Encefalopatías/terapia , Humanos , Metaloproteinasa 9 de la Matriz/genética , Plasticidad Neuronal/fisiología
7.
Respir Physiol Neurobiol ; 320: 104188, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37939866

RESUMEN

Breathing requires distinct patterns of neuronal activity in the brainstem. The most critical part of the neuronal network responsible for respiratory rhythm generation is the preBötzinger Complex (preBötC), located in the ventrolateral medulla. This area contains both rhythmogenic glutamatergic neurons and also a high number of inhibitory neurons. Here, we aimed to analyze the activity of glycinergic neurons in the preBötC in anesthetized mice. To identify inhibitory neurons, we used a transgenic mouse line that allows expression of Channelrhodopsin 2 in glycinergic neurons. Using juxtacellular recordings and optogenetic activation via a single recording electrode, we were able to identify neurons as inhibitory and define their activity pattern in relation to the breathing rhythm. We could show that the activity pattern of glycinergic respiratory neurons in the preBötC was heterogeneous. Interestingly, only a minority of the identified glycinergic neurons showed a clear phase-locked activity pattern in every respiratory cycle. Taken together, we could show that neuron identification is possible by a combination of juxtacellular recordings and optogenetic activation via a single recording electrode.


Asunto(s)
Optogenética , Centro Respiratorio , Ratones , Animales , Centro Respiratorio/fisiología , Neuronas/metabolismo , Bulbo Raquídeo/fisiología , Ratones Transgénicos
8.
Respir Physiol Neurobiol ; 311: 104032, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36758781

RESUMEN

Brainstem neural circuits located in the preBötzinger complex (preBötC) and Bötzinger complex (BötC) play a critical role in the control of breathing. In this study, glycinergic preBötC and BötC neurons were inactivated with optogenetics in vivo using mice with Cre inducible expression of eNpHR3.0-EYFP. Unilateral inhibition of glycinergic neurons in the preBötC, and to a lower extend also in the BötC, led to a higher respiratory rate. It can be concluded that functional inactivation of inhibitory neurons leads to a disinhibition of preBötC excitatory neurons and thus an increase in the respiratory drive of the network.


Asunto(s)
Optogenética , Frecuencia Respiratoria , Ratones , Animales , Centro Respiratorio/fisiología , Neuronas/metabolismo , Respiración
9.
Front Cell Neurosci ; 17: 1111263, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816850

RESUMEN

Angiotensin II (Ang II) is the primary modulator of the renin-angiotensin system and has been widely studied for its effect on the cardiovascular system. While a few studies have also indicated an involvement of Ang II in the regulation of breathing, very little is known in this regard and its effect on brainstem respiratory regions such as the preBötzinger complex (preBötC), the kernel for inspiratory rhythm generation, has not been investigated yet. This study reports that Ang II temporarily increases phrenic nerve activity in the working heart-brainstem preparation, indicating higher central respiratory drive. Previous studies have shown that the carotid body is involved in mediating this effect and we revealed that the preBötC also plays a part, using acute slices of the brainstem. It appears that Ang II is increasing the respiratory drive in an AT1R-dependent manner by optimizing the interaction of inhibitory and excitatory neurons of the preBötC. Thus, Ang II-mediated effects on the preBötC are potentially involved in dysregulating breathing in patients with acute lung injury.

10.
Front Physiol ; 14: 1237376, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37693007

RESUMEN

The neuronal activity in the respiratory network strongly depends on a variety of different neuromodulators. Given the essential role of astrocytes in stabilizing respiratory network activity generated by neurons in the preBötzinger complex (preBötC), our aim was to investigate astrocytic calcium signaling in the working heart brainstem preparation using fiber-optical imaging. By using transgenic mice that express GCaMP6s specifically in astrocytes, we successfully recorded astrocytic calcium signals in response to norepinephrine from individual astrocytes.

11.
Front Behav Neurosci ; 13: 195, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31555105

RESUMEN

Understanding gene-environment interactions in the pathogenesis of schizophrenia remains a major research challenge. Matrix metalloproteinase-9 (MMP-9) has been previously implicated in the pathophysiology of schizophrenia. In the present study, adolescent Mmp-9 heterozygous mice, with a genetically lower level of MMP-9, were subjected to resident-intruder psychosocial stress for 3 weeks and then examined in behavioral tests that evaluated cognitive deficits and positive- and negative-like symptoms of schizophrenia. Cognitive and positive symptoms in unstressed Mmp-9 heterozygous mice were unaffected by stress exposure, whereas negative symptoms were manifested only after stress exposure. Interestingly, negative symptoms were ameliorated by treatment with the antipsychotic drug clozapine. We describe a novel gene × environment interaction mouse model of schizophrenia. Lower MMP-9 levels in the brain might be a risk factor for schizophrenia that, in combination with environmental factors (e.g., psychosocial stress), may evoke schizophrenia-like symptoms that are sensitive to antipsychotic treatment.

12.
Behav Brain Res ; 352: 35-45, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28189758

RESUMEN

The postsynaptic density proteins 95 (PSD95) and 93 (PSD93) belong to a family of scaffolding proteins, the membrane-associated guanylate kinases (MAGUKs), which are highly enriched in synapses and responsible for organizing the numerous protein complexes required for synaptic development and plasticity. Genetic studies have associated MAGUKs with diseases like autism and schizophrenia, but knockout mice show severe, complex defects with difficult-to-interpret behavioral abnormalities due to major motor dysfunction which is atypical for psychiatric phenotypes. Therefore, rather than studying loss-of-function mutants, we comprehensively investigated the behavioral consequences of reduced PSD95 expression, using heterozygous PSD95 knockout mice (PSD95+/-). Specifically, we asked whether heterozygous PSD95 deficient mice would exhibit alterations in the processing of social stimuli and social behavior. Additionally, we investigated whether PSD95 and PSD93 would reveal any indication of functional or biological redundancy. Therefore, homozygous and heterozygous PSD93 deficient mice were examined in a similar behavioral battery as PSD95 mutants. We found robust hypersocial behavior in the dyadic interaction test in both PSD95+/- males and females. Additionally, male PSD95+/- mice exhibited higher levels of aggression and territoriality, while female PSD95+/- mice showed increased vocalization upon exposure to an anesthetized female mouse. Both male and female PSD95+/- mice revealed mild hypoactivity in the open field but no obvious motor deficit. Regarding PSD93 mutants, homozygous (but not heterozygous) knockout mice displayed prominent hypersocial behavior comparable to that observed in PSD95+/- mice, despite a more severe motor phenotype, which precluded several behavioral tests or their interpretation. Considering that PSD95 and PSD93 reduction provoke strikingly similar behavioral consequences, we explored a potential substitution effect and found increased PSD93 protein expression in hippocampal synaptic enrichment preparations of PSD95+/- mice. These data suggest that both PSD95 and PSD93 are involved in processing of social stimuli and control of social behavior. This important role may be partly assured by functional/behavioral and biological/biochemical redundancy.


Asunto(s)
Homólogo 4 de la Proteína Discs Large/deficiencia , Guanilato-Quinasas/deficiencia , Proteínas de la Membrana/deficiencia , Conducta Social , Animales , Conducta Animal/fisiología , Homólogo 4 de la Proteína Discs Large/genética , Femenino , Guanilato-Quinasas/genética , Hipocampo/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología
13.
EMBO Mol Med ; 9(8): 1100-1116, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28623238

RESUMEN

Matrix metalloproteinase 9 (MMP-9) has recently emerged as a molecule that contributes to pathological synaptic plasticity in schizophrenia, but explanation of the underlying mechanisms has been missing. In the present study, we performed a phenotype-based genetic association study (PGAS) in > 1,000 schizophrenia patients from the Göttingen Research Association for Schizophrenia (GRAS) data collection and found an association between the MMP-9 rs20544 C/T single-nucleotide polymorphism (SNP) located in the 3'untranslated region (UTR) and the severity of a chronic delusional syndrome. In cultured neurons, the rs20544 SNP influenced synaptic MMP-9 activity and the morphology of dendritic spines. We demonstrated that Fragile X mental retardation protein (FMRP) bound the MMP-9 3'UTR We also found dramatic changes in RNA structure folding and alterations in the affinity of FMRP for MMP-9 RNA, depending on the SNP variant. Finally, we observed greater sensitivity to psychosis-related locomotor hyperactivity in Mmp-9 heterozygous mice. We propose a novel mechanism that involves MMP-9-dependent changes in dendritic spine morphology and the pathophysiology of schizophrenia, providing the first mechanistic insights into the way in which the single base change in the MMP-9 gene (rs20544) influences gene function and results in phenotypic changes observed in schizophrenia patients.


Asunto(s)
Metaloproteinasa 9 de la Matriz/análisis , Metaloproteinasa 9 de la Matriz/genética , Polimorfismo de Nucleótido Simple , Esquizofrenia Paranoide/patología , Sinapsis/enzimología , Regiones no Traducidas 3' , Adolescente , Adulto , Anciano , Animales , Células Cultivadas , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Estudios de Asociación Genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Neuronas/citología , Conformación de Ácido Nucleico , Unión Proteica , ARN Mensajero/química , ARN Mensajero/metabolismo , Adulto Joven
14.
Basic Clin Neurosci ; 6(2): 101-6, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27307954

RESUMEN

INTRODUCTION: Based on the previous studies, we know that the hemispheric lateralization defects, increase the probability of psychological disorders. We also know that dominant limb is controlled by dominant hemisphere and limb preference is used as an indicator for hemisphere dominance. In this study we attempted to explore the hemispheric dominance by the use of three limbs (hand, foot and eye). METHODS: We performed this survey on two samples, psychiatric patients compared with normal population. For this purpose, knowing that the organ dominance is stabilized in adolescence, and age has no effect on the people above 15, we used 48 high school girls and 65 boys as the final samples of normal population. The patient group included 57 male and 26 female who were chronic psychiatric patients. RESULTS: The result shows that left-eye dominance is more in patients than the normal group (P=0.000) but the handedness and footedness differences are not significance. In psychotic, bipolar and depressive disorders, eye dominance had significant difference (P=0.018). But this is not true about hand and foot dominance. DISCUSSION: Our findings proved that generally in psychiatric patients, left-eye dominance is more common, left-eye dominance is also more in psychotic and depressive disorders. It is less common in bipolar disorders.

15.
Indian J Med Sci ; 67(7-8): 155-60, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24469559

RESUMEN

The world population with an increase of 75% will be 10 billion by 2050. Current contraception methods have difficulties, and there is no safe and ideal way of contraception. Contraception, which based on immunocontraception stimulation, is a modern method presentation. This study is going to review and examine the response of anti-sperm anti-body in serum and uterus secretions, and resultant infertility induction rate. Despite of current different contradictions in the field of mature sperm protein capability in infertility induction, the results of this study showed that, immunocontraception stimulation is the best way of infertility induction. Antibody response induction is wholly depends on the type of immunogenic element and its method of presentation. Compared with other different methods of presentation, the intramuscular presentation method was efficient than mucous presentation methods. Perhaps the inefficiency of mucous methods is due to the largeness of mature sperm antigen and mucous cells inability in presentation of this antigen to immune system in mucous presentation methods. More studies should be done in future.


Asunto(s)
Anticoncepción Inmunológica , Infertilidad Femenina/inmunología , Espermatozoides/inmunología , Vacunas Anticonceptivas , Presentación de Antígeno , Condones , Anticoncepción Inmunológica/efectos adversos , Anticonceptivos Femeninos , Femenino , Humanos , Dispositivos Intrauterinos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA