Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 184(11): 3022-3040.e28, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33961781

RESUMEN

Thousands of interactions assemble proteins into modules that impart spatial and functional organization to the cellular proteome. Through affinity-purification mass spectrometry, we have created two proteome-scale, cell-line-specific interaction networks. The first, BioPlex 3.0, results from affinity purification of 10,128 human proteins-half the proteome-in 293T cells and includes 118,162 interactions among 14,586 proteins. The second results from 5,522 immunoprecipitations in HCT116 cells. These networks model the interactome whose structure encodes protein function, localization, and complex membership. Comparison across cell lines validates thousands of interactions and reveals extensive customization. Whereas shared interactions reside in core complexes and involve essential proteins, cell-specific interactions link these complexes, "rewiring" subnetworks within each cell's interactome. Interactions covary among proteins of shared function as the proteome remodels to produce each cell's phenotype. Viewable interactively online through BioPlexExplorer, these networks define principles of proteome organization and enable unknown protein characterization.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/genética , Proteoma/genética , Biología Computacional/métodos , Células HCT116/metabolismo , Células HEK293/metabolismo , Humanos , Espectrometría de Masas/métodos , Mapas de Interacción de Proteínas/fisiología , Proteoma/metabolismo , Proteómica/métodos
2.
Cell ; 180(5): 968-983.e24, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109415

RESUMEN

Mammalian tissues engage in specialized physiology that is regulated through reversible modification of protein cysteine residues by reactive oxygen species (ROS). ROS regulate a myriad of biological processes, but the protein targets of ROS modification that drive tissue-specific physiology in vivo are largely unknown. Here, we develop Oximouse, a comprehensive and quantitative mapping of the mouse cysteine redox proteome in vivo. We use Oximouse to establish several paradigms of physiological redox signaling. We define and validate cysteine redox networks within each tissue that are tissue selective and underlie tissue-specific biology. We describe a common mechanism for encoding cysteine redox sensitivity by electrostatic gating. Moreover, we comprehensively identify redox-modified disease networks that remodel in aged mice, establishing a systemic molecular basis for the long-standing proposed links between redox dysregulation and tissue aging. We provide the Oximouse compendium as a framework for understanding mechanisms of redox regulation in physiology and aging.


Asunto(s)
Envejecimiento/genética , Cisteína/genética , Proteínas/genética , Proteoma/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Cisteína/metabolismo , Humanos , Ratones , Especificidad de Órganos/genética , Oxidación-Reducción , Estrés Oxidativo/genética , Proteómica/métodos , Especies Reactivas de Oxígeno , Transducción de Señal/genética
3.
Cell ; 176(5): 1083-1097.e18, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30739799

RESUMEN

Cell size varies greatly between cell types, yet within a specific cell type and growth condition, cell size is narrowly distributed. Why maintenance of a cell-type specific cell size is important remains poorly understood. Here we show that growing budding yeast and primary mammalian cells beyond a certain size impairs gene induction, cell-cycle progression, and cell signaling. These defects are due to the inability of large cells to scale nucleic acid and protein biosynthesis in accordance with cell volume increase, which effectively leads to cytoplasm dilution. We further show that loss of scaling beyond a certain critical size is due to DNA becoming limiting. Based on the observation that senescent cells are large and exhibit many of the phenotypes of large cells, we propose that the range of DNA:cytoplasm ratio that supports optimal cell function is limited and that ratios outside these bounds contribute to aging.


Asunto(s)
Aumento de la Célula , Senescencia Celular/fisiología , Citoplasma/metabolismo , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Ciclo Celular , Proliferación Celular , Tamaño de la Célula , Senescencia Celular/genética , Fibroblastos/metabolismo , Células HEK293 , Humanos , Cultivo Primario de Células , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomycetales/genética , Saccharomycetales/crecimiento & desarrollo , Saccharomycetales/metabolismo , Transducción de Señal
4.
Cell ; 162(2): 425-440, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26186194

RESUMEN

Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80%-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally related proteins. Finally, BioPlex, in combination with other approaches, can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial amyotrophic lateral sclerosis perturb a defined community of interactors.


Asunto(s)
Mapas de Interacción de Proteínas , Proteómica/métodos , Esclerosis Amiotrófica Lateral/genética , Humanos , Espectrometría de Masas , Mapeo de Interacción de Proteínas , Proteínas/química , Proteínas/aislamiento & purificación , Proteínas/metabolismo
5.
Mol Cell ; 81(22): 4722-4735.e5, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34626566

RESUMEN

Rapid protein degradation enables cells to quickly modulate protein abundance. Dysregulation of short-lived proteins plays essential roles in disease pathogenesis. A focused map of short-lived proteins remains understudied. Cycloheximide, a translational inhibitor, is widely used in targeted studies to measure degradation kinetics for short-lived proteins. Here, we combined cycloheximide chase assays with advanced quantitative proteomics to map short-lived proteins under translational inhibition in four human cell lines. Among 11,747 quantified proteins, we identified 1,017 short-lived proteins (half-lives ≤ 8 h). These short-lived proteins are less abundant, evolutionarily younger, and less thermally stable than other proteins. We quantified 103 proteins with different stabilities among cell lines. We showed that U2OS and HCT116 cells express truncated forms of ATRX and GMDS, respectively, which have lower stability than their full-length counterparts. This study provides a large-scale resource of human short-lived proteins under translational arrest, leading to untapped avenues of protein regulation for therapeutic interventions.


Asunto(s)
Proteínas/química , Proteoma , Proteómica/métodos , Alanina/análogos & derivados , Alanina/química , Línea Celular , Línea Celular Tumoral , Cicloheximida/química , Cicloheximida/farmacología , Fucosa/química , Geminina/química , Células HCT116 , Células HEK293 , Humanos , Péptidos/química , Análisis de Componente Principal , Biosíntesis de Proteínas , Proteínas/efectos de los fármacos , Control de Calidad , ARN Interferente Pequeño/metabolismo , Telómero/química
6.
Nature ; 600(7889): 536-542, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819669

RESUMEN

The cell is a multi-scale structure with modular organization across at least four orders of magnitude1. Two central approaches for mapping this structure-protein fluorescent imaging and protein biophysical association-each generate extensive datasets, but of distinct qualities and resolutions that are typically treated separately2,3. Here we integrate immunofluorescence images in the Human Protein Atlas4 with affinity purifications in BioPlex5 to create a unified hierarchical map of human cell architecture. Integration is achieved by configuring each approach as a general measure of protein distance, then calibrating the two measures using machine learning. The map, known as the multi-scale integrated cell (MuSIC 1.0), resolves 69 subcellular systems, of which approximately half are to our knowledge undocumented. Accordingly, we perform 134 additional affinity purifications and validate subunit associations for the majority of systems. The map reveals a pre-ribosomal RNA processing assembly and accessory factors, which we show govern rRNA maturation, and functional roles for SRRM1 and FAM120C in chromatin and RPS3A in splicing. By integration across scales, MuSIC increases the resolution of imaging while giving protein interactions a spatial dimension, paving the way to incorporate diverse types of data in proteome-wide cell maps.


Asunto(s)
Cromosomas , Proteoma , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Cromatina/genética , Cromosomas/metabolismo , Humanos , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteoma/metabolismo , ARN Ribosómico , Proteínas de Unión al ARN/genética
7.
Genes Dev ; 33(15-16): 1031-1047, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31196865

RESUMEN

Aneuploidy, a condition characterized by chromosome gains and losses, causes reduced fitness and numerous cellular stresses, including increased protein aggregation. Here, we identify protein complex stoichiometry imbalances as a major cause of protein aggregation in aneuploid cells. Subunits of protein complexes encoded on excess chromosomes aggregate in aneuploid cells, which is suppressed when expression of other subunits is coordinately altered. We further show that excess subunits are either degraded or aggregate and that protein aggregation is nearly as effective as protein degradation at lowering levels of excess proteins. Our study explains why proteotoxic stress is a universal feature of the aneuploid state and reveals protein aggregation as a form of dosage compensation to cope with disproportionate expression of protein complex subunits.


Asunto(s)
Aneuploidia , Citosol/metabolismo , Compensación de Dosificación (Genética)/fisiología , Agregado de Proteínas/genética , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Agregación Patológica de Proteínas , Subunidades de Proteína/metabolismo , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33827988

RESUMEN

In order to understand the transmission and virulence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is necessary to understand the functions of each of the gene products encoded in the viral genome. One feature of the SARS-CoV-2 genome that is not present in related, common coronaviruses is ORF10, a putative 38-amino acid protein-coding gene. Proteomic studies found that ORF10 binds to an E3 ubiquitin ligase containing Cullin-2, Rbx1, Elongin B, Elongin C, and ZYG11B (CRL2ZYG11B). Since CRL2ZYG11B mediates protein degradation, one possible role for ORF10 is to "hijack" CRL2ZYG11B in order to target cellular, antiviral proteins for ubiquitylation and subsequent proteasomal degradation. Here, we investigated whether ORF10 hijacks CRL2ZYG11B or functions in other ways, for example, as an inhibitor or substrate of CRL2ZYG11B While we confirm the ORF10-ZYG11B interaction and show that the N terminus of ORF10 is critical for it, we find no evidence that ORF10 is functioning to inhibit or hijack CRL2ZYG11B Furthermore, ZYG11B and its paralog ZER1 are dispensable for SARS-CoV-2 infection in cultured cells. We conclude that the interaction between ORF10 and CRL2ZYG11B is not relevant for SARS-CoV-2 infection in vitro.


Asunto(s)
COVID-19/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/metabolismo , Complejos Multiproteicos/metabolismo , Sistemas de Lectura Abierta , SARS-CoV-2/metabolismo , Proteínas Virales/metabolismo , COVID-19/genética , Proteínas de Ciclo Celular/genética , Proteínas Cullin/genética , Células HEK293 , Humanos , Complejos Multiproteicos/genética , SARS-CoV-2/genética , Proteínas Virales/genética
9.
Science ; 385(6712): eadj7446, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39208097

RESUMEN

Chromosomal instability (CIN) generates micronuclei-aberrant extranuclear structures that catalyze the acquisition of complex chromosomal rearrangements present in cancer. Micronuclei are characterized by persistent DNA damage and catastrophic nuclear envelope collapse, which exposes DNA to the cytoplasm. We found that the autophagic receptor p62/SQSTM1 modulates micronuclear stability, influencing chromosome fragmentation and rearrangements. Mechanistically, proximity of micronuclei to mitochondria led to oxidation-driven homo-oligomerization of p62, limiting endosomal sorting complex required for transport (ESCRT)-dependent micronuclear envelope repair by triggering autophagic degradation. We also found that p62 levels correlate with increased chromothripsis across human cancer cell lines and with increased CIN in colorectal tumors. Thus, p62 acts as a regulator of micronuclei and may serve as a prognostic marker for tumors with high CIN.


Asunto(s)
Autofagia , Inestabilidad Cromosómica , Cromotripsis , Neoplasias Colorrectales , Micronúcleos con Defecto Cromosómico , Proteína Sequestosoma-1 , Humanos , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Línea Celular Tumoral , Daño del ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Membrana Nuclear/metabolismo
10.
J Cell Biol ; 218(9): 2982-3001, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31320392

RESUMEN

The unidirectional and opposite-polarity microtubule-based motors, dynein and kinesin, drive long-distance intracellular cargo transport. Cellular observations suggest that opposite-polarity motors may be coupled. We recently identified an interaction between the cytoplasmic dynein-1 activating adaptor Hook3 and the kinesin-3 KIF1C. Here, using in vitro reconstitutions with purified components, we show that KIF1C and dynein/dynactin can exist in a complex scaffolded by Hook3. Full-length Hook3 binds to and activates dynein/dynactin motility. Hook3 also binds to a short region in the "tail" of KIF1C, but unlike dynein/dynactin, this interaction does not activate KIF1C. Hook3 scaffolding allows dynein to transport KIF1C toward the microtubule minus end, and KIF1C to transport dynein toward the microtubule plus end. In cells, KIF1C can recruit Hook3 to the cell periphery, although the cellular role of the complex containing both motors remains unknown. We propose that Hook3's ability to scaffold dynein/dynactin and KIF1C may regulate bidirectional motility, promote motor recycling, or sequester the pool of available dynein/dynactin activating adaptors.


Asunto(s)
Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Línea Celular Tumoral , Dineínas/genética , Humanos , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA