Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 754
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 36: 783-812, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29677475

RESUMEN

The nervous system regulates immunity and inflammation. The molecular detection of pathogen fragments, cytokines, and other immune molecules by sensory neurons generates immunoregulatory responses through efferent autonomic neuron signaling. The functional organization of this neural control is based on principles of reflex regulation. Reflexes involving the vagus nerve and other nerves have been therapeutically explored in models of inflammatory and autoimmune conditions, and recently in clinical settings. The brain integrates neuro-immune communication, and brain function is altered in diseases characterized by peripheral immune dysregulation and inflammation. Here we review the anatomical and molecular basis of the neural interface with immunity, focusing on peripheral neural control of immune functions and the role of the brain in the model of the immunological homunculus. Clinical advances stemming from this knowledge within the framework of bioelectronic medicine are also briefly outlined.


Asunto(s)
Neuroinmunomodulación , Animales , Biomarcadores , Susceptibilidad a Enfermedades , Humanos , Inmunidad , Sistema Nervioso/anatomía & histología , Sistema Nervioso/inmunología , Sistema Nervioso/metabolismo , Fenómenos Fisiológicos del Sistema Nervioso , Neuroinmunomodulación/genética , Neuroinmunomodulación/inmunología , Transducción de Señal , Investigación Biomédica Traslacional
2.
Immunity ; 46(6): 927-942, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28636960

RESUMEN

Active research at the frontiers of immunology and neuroscience has identified multiple points of interaction and communication between the immune system and the nervous system. Immune cell activation stimulates neuronal circuits that regulate innate and adaptive immunity. Molecular mechanistic insights into the inflammatory reflex and other neuro-immune interactions have greatly advanced our understanding of immunity and identified new therapeutic possibilities in inflammatory and autoimmune diseases. Recent successful clinical trials using bioelectronic devices that modulate the inflammatory reflex to significantly ameliorate rheumatoid arthritis and inflammatory bowel disease provide a path for using electrons as a therapeutic modality for targeting molecular mechanisms of immunity. Here, we review mechanisms of peripheral sensory neuronal function in response to immune challenges, the neural regulation of immunity and inflammation, and the therapeutic implications of those mechanistic insights.


Asunto(s)
Artritis Reumatoide/inmunología , Sistema Inmunológico , Enfermedades Inflamatorias del Intestino/inmunología , Neuroinmunomodulación , Células Receptoras Sensoriales/fisiología , Inmunidad Adaptativa , Animales , Humanos , Inmunidad Innata , Inflamación
3.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629798

RESUMEN

The prevalence of posttraumatic olfactory dysfunction in children after mild traumatic brain injury ranges from 3 to 58%, with potential factors influencing this variation, including traumatic brain injury severity and assessment methods. This prospective longitudinal study examines the association between mild traumatic brain injury and olfactory dysfunction in children. Seventy-five pediatric patients with mild traumatic brain injury and an age-matched healthy control group were enrolled. Olfactory function was assessed using the Sniffin' Sticks battery, which focuses on olfactory threshold and odor identification. The study found that children with mild traumatic brain injury had impaired olfactory function compared with healthy controls, particularly in olfactory threshold scores. The prevalence of olfactory dysfunction in the patient group was 33% and persisted for 1 yr. No significant association was found between traumatic brain injury symptoms (e.g. amnesia, loss of consciousness) and olfactory dysfunction. The study highlights the importance of assessing olfactory function in children after mild traumatic brain injury, given its potential impact on daily life. Although most olfactory dysfunction appears transient, long-term follow-up is essential to fully understand the recovery process. The findings add valuable insights to the limited literature on this topic and urge the inclusion of olfactory assessments in the management of pediatric mild traumatic brain injury.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Trastornos del Olfato , Humanos , Niño , Conmoción Encefálica/complicaciones , Estudios de Casos y Controles , Trastornos del Olfato/etiología , Estudios Prospectivos , Estudios Longitudinales , Olfato , Odorantes , Lesiones Traumáticas del Encéfalo/complicaciones
4.
Biochem Biophys Res Commun ; 696: 149473, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38241814

RESUMEN

The saliva of the medicinal leech contains various anticoagulants. Some of them, such as hirudin, are well known. However, it is reasonable to believe that not all anticoagulant proteins from medicinal leech saliva have been identified. We previously performed a comprehensive study of the transcriptome, genome, and proteome of leech salivary gland cells, which led to the discovery of several previously unknown hypothetical proteins that may have anticoagulant properties. Subsequently, we obtained a series of recombinant proteins and investigated their impact on coagulation in in vitro assays. We identified a previously undescribed protein that exhibited a high ability to suppress coagulation. The His-tagged recombinant protein was expressed in Escherichia coli and purified using metal chelate chromatography. To determine its activity, commonly used coagulation methods were used: activated partial thromboplastin time, prothrombin time, and thrombin inhibition clotting assay. Clotting and chromogenic assays for factor Xa inhibition were performed to evaluate anti-Xa activity. We used recombinant hirudin as a control anticoagulant protein in all experiments. The new protein showed significantly greater inhibition of coagulation than hirudin at the same molar concentrations in the activated partial thrombin time assay. However, hirudin demonstrated better results in the direct thrombin inhibition test, although the tested protein also exhibited the ability to inhibit thrombin. The chromogenic analysis of factor Xa inhibition revealed no activity, whereas the clotting test for factor Xa showed the opposite result. Thus, a new powerful anticoagulant protein has been discovered in the medicinal leech. This protein is homologous to antistatin, with 28 % identical amino acid residues. The recombinant protein was expressed in E. coli. This protein is capable of directly inhibiting thrombin, and based on indirect evidence, other proteases of the blood coagulation cascade have been identified.


Asunto(s)
Anticoagulantes , Hirudinas , Anticoagulantes/farmacología , Hirudinas/farmacología , Hirudinas/genética , Hirudinas/metabolismo , Trombina/metabolismo , Factor Xa , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo
5.
J Neuroinflammation ; 21(1): 3, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178134

RESUMEN

BACKGROUND: The involvement of the autonomic nervous system in the regulation of inflammation is an emerging concept with significant potential for clinical applications. Recent studies demonstrate that stimulating the vagus nerve activates the cholinergic anti-inflammatory pathway that inhibits pro-inflammatory cytokines and controls inflammation. The α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages plays a key role in mediating cholinergic anti-inflammatory effects through a downstream intracellular mechanism involving inhibition of NF-κB signaling, which results in suppression of pro-inflammatory cytokine production. However, the role of the α7nAChR in the regulation of other aspects of the immune response, including the recruitment of monocytes/macrophages to the site of inflammation remained poorly understood. RESULTS: We observed an increased mortality in α7nAChR-deficient mice (compared with wild-type controls) in mice with endotoxemia, which was paralleled with a significant reduction in the number of monocyte-derived macrophages in the lungs. Corroborating these results, fluorescently labeled α7nAChR-deficient monocytes adoptively transferred to WT mice showed significantly diminished recruitment to the inflamed tissue. α7nAChR deficiency did not affect monocyte 2D transmigration across an endothelial monolayer, but it significantly decreased the migration of macrophages in a 3D fibrin matrix. In vitro analysis of major adhesive receptors (L-selectin, ß1 and ß2 integrins) and chemokine receptors (CCR2 and CCR5) revealed reduced expression of integrin αM and αX on α7nAChR-deficient macrophages. Decreased expression of αMß2 was confirmed on fluorescently labeled, adoptively transferred α7nAChR-deficient macrophages in the lungs of endotoxemic mice, indicating a potential mechanism for α7nAChR-mediated migration. CONCLUSIONS: We demonstrate a novel role for the α7nAChR in mediating macrophage recruitment to inflamed tissue, which indicates an important new aspect of the cholinergic regulation of immune responses and inflammation.


Asunto(s)
Endotoxemia , Receptor Nicotínico de Acetilcolina alfa 7 , Ratones , Animales , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Endotoxemia/metabolismo , Colinérgicos/metabolismo
6.
Arch Biochem Biophys ; 752: 109843, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38072298

RESUMEN

Self-assembling nanoparticles (saNP) and nanofibers were found in the recombinant coronavirus SARS-CoV-2 S1, S2, RBD and N proteins purified by affinity chromatography using Ni Sepharose. Scanning electron (SEM), atomic force (AFM) microscopy on mica or graphite surface and in liquid as well as dynamic light scattering (DLS) revealed nanostructures of various sizes. AFM in liquid cell without drying on the surface showed mean height of S1 saNP 80.03 nm, polydispersity index (PDI) 0.006; for S2 saNP mean height 93.32 nm, PDI = 0.008; for N saNP mean height 16.71 nm, PDI = 0.99; for RBD saNP mean height 16.25 nm, PDI = 0.55. Ratios between the height and radius of each saNP in the range 0.1-0.5 suggested solid protein NP but not vesicles with internal empty spaces. The solid but not empty structures of the protein saNP were also confirmed by STEM after treatment of saNP with the standard contrasting agent uranyl acetate. The saNP remained stable after multiple freeze-thaw cycles in water and hyperosmotic solutions for 2 years at -20 °C. Receptor-mediated penetration of the SARS-CoV-2 S1 and RBD saNP in the African green mokey kidney Vero cells with the specific receptors for ß-coronavirus reproduction was more efficient compared to unspecific endocytosis into MDCK cells without the specific receptors. Amyloid-like structures were revealed in the SARS-CoV-2 S1, S2, RBD and N saNP by means of their interaction with Thioflavin T and Congo Red dyes. Taken together, spontaneous formation of the amyloid-like self-assembling nanostructures due to the internal affinity of the SARS-CoV-2 virion proteins might induce proteinopathy in patients, including conformational neurodegenerative diseases, change stability of vaccines and diagnostic systems.


Asunto(s)
COVID-19 , Nanoestructuras , Animales , Humanos , Chlorocebus aethiops , SARS-CoV-2 , Células Vero , Proteínas Recombinantes , Amiloide , Proteínas Amiloidogénicas
7.
Chem Senses ; 492024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38297967

RESUMEN

In this study, the transfer of odorants, namely vanilla, and garlic, into the amniotic fluid (AF) during the second trimester was investigated by examination of collected AF samples through healthy adults. Eleven AF samples were collected from pregnant women (aged 32.9 ±â€…4.9 yr, 16-25 wk of gestation) undergoing diagnostic amniocentesis after eating garlic oil or vanilla powder in high-fat yogurt. The control group did not receive food before amniocentesis. Two vanilla, 3 garlic, and 6 control samples were collected through amniocentesis 60-120 min after ingestion. Samples were collected at -80 °C and carefully defrosted over 12 h at the same time point. Sixteen healthy volunteers (8 males, aged 26.5 ±â€…5.0 yr) were asked to judge AF samples with potential garlic or vanilla odors from controls in a 2-alternative forced choice (2AFC) paradigm. Judges were able to identify vanilla in the AF samples with an estimated probability of 50%, resulting in a significant P-value of < 0.001. In contrast, the identification of garlic was unsuccessful with a P-value of 0.86, and only 2 judges were able to identify both vanilla and garlic. According to the results of this study, the vanilla odor probably passes into the amniotic fluid.


Asunto(s)
Líquido Amniótico , Madres , Masculino , Adulto , Embarazo , Femenino , Humanos , Amniocentesis , Olfato , Dieta
8.
Brain Behav Immun ; 120: 630-639, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38670240

RESUMEN

BACKGROUND: The vagus nerve plays an important role in neuroimmune interactions and in the regulation of inflammation. A major source of efferent vagus nerve fibers that contribute to the regulation of inflammation is the brainstem dorsal motor nucleus of the vagus (DMN), as recently shown using optogenetics. In contrast to optogenetics, electrical neuromodulation has broad therapeutic implications. However, the anti-inflammatory effectiveness of electrical stimulation of the DMN (eDMNS) and the possible heart rate (HR) alterations associated with this approach have not been investigated. Here, we examined the effects of eDMNS on HR and cytokine levels in mice administered with lipopolysaccharide (LPS, endotoxin) and in mice subjected to cecal ligation and puncture (CLP) sepsis. METHODS: Anesthetized male 8-10-week-old C57BL/6 mice on a stereotaxic frame were subjected to eDMNS using a concentric bipolar electrode inserted into the left or right DMN or sham stimulation. eDMNS (500, 250 or 50 µA at 30 Hz, for 1 min) was performed and HR recorded. In endotoxemia experiments, sham or eDMNS utilizing 250 µA or 50 µA was performed for 5 mins and was followed by LPS (0.5 mg/kg) i.p. administration. eDMNS was also applied in mice with cervical unilateral vagotomy or sham operation. In CLP experiments sham or left eDMNS was performed immediately post CLP. Cytokines and corticosterone were analyzed 90 mins after LPS administration or 24 h after CLP. CLP survival was monitored for 14 days. RESULTS: Either left or right eDMNS at 500 µA and 250 µA decreased HR, compared with baseline pre-stimulation. This effect was not observed at 50 µA. Left side eDMNS at 50 µA, compared with sham stimulation, significantly decreased serum and splenic levels of the pro-inflammatory cytokine TNF and increased serum levels of the anti-inflammatory cytokine IL-10 during endotoxemia. The anti-inflammatory effect of eDMNS was abrogated in mice with unilateral vagotomy and was not associated with serum corticosterone alterations. Right side eDMNS in endotoxemic mice suppressed serum TNF and increased serum IL-10 levels but had no effects on splenic cytokines. In mice with CLP, left side eDMNS suppressed serum IL-6, as well as splenic IL-6 and increased splenic IL-10 and significantly improved the survival rate of CLP mice. CONCLUSIONS: For the first time we show that a regimen of eDMNS which does not cause bradycardia alleviates LPS-induced inflammation. These eDMNS anti-inflammatory effects require an intact vagus nerve and are not associated with corticosteroid alterations. eDMNS also decreases inflammation and improves survival in a model of polymicrobial sepsis. These findings are of interest for further studies exploring bioelectronic anti-inflammatory approaches targeting the brainstem DMN.


Asunto(s)
Citocinas , Frecuencia Cardíaca , Inflamación , Lipopolisacáridos , Ratones Endogámicos C57BL , Sepsis , Nervio Vago , Animales , Masculino , Ratones , Frecuencia Cardíaca/fisiología , Nervio Vago/metabolismo , Inflamación/metabolismo , Sepsis/fisiopatología , Sepsis/metabolismo , Citocinas/metabolismo , Estimulación Eléctrica/métodos , Estimulación del Nervio Vago/métodos , Endotoxemia/fisiopatología , Endotoxemia/metabolismo
9.
Biomacromolecules ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056889

RESUMEN

Cancer stem cells (CSCs) make up a small population of cancer cells, primarily responsible for tumor initiation, metastasis, and drug resistance. They overexpress Arg-Gly-Asp (RGD) binding integrin receptors that play crucial roles in cell proliferation and stemness through interaction with the extracellular matrix. Here, we showed that monodisperse polymeric tadpole nanoparticles covalently coupled with different RGD densities regulated colon CSC proliferation and stemness in a RGD density-dependent manner. These tadpoles penetrated deeply and evenly into tumor spheroids and specifically entered cells with cancer stem markers CD24 and CD133. Low RGD density tadpoles triggered integrin α5 expression that further activated TGF-ß3 and TGF-ß2 signaling pathways, confirmed by the increase of pERK and Bcl-2 protein levels. This process is associated with the RGD cluster presentation controlled by the RGD density on the tadpole surface.

10.
J Phys Chem A ; 128(17): 3231-3240, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38512800

RESUMEN

The conformational analysis of nine functionalized 1,2,3-triazoles was carried out by the correlation of calculated and experimental high-level nuclear magnetic resonance (NMR) chemical shifts. In solution, the studied triazoles are in exchange dynamic equilibrium caused by their prototropic tautomerism of the NH-proton. The experimentally unresolved NMR signals were assigned for most of the compounds. A more thorough survey was conducted for 4-t-butyl-1,2,3-triazole-5-carbaldehyde oxime. The analysis performed within the framework of the DP4+ formalism completely confirmed the hypothesis of the predominance of the 2H-tautomer. Thus, the methodology for estimating stereochemical structures in the absence of some experimental data allowed the most stable conformations for dynamic systems with different tautomeric ratios to be reliably identified.

11.
Nucleic Acids Res ; 50(2): 867-884, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35037046

RESUMEN

Eukaryotic genomes harbor hundreds of rRNA genes, many of which are transcriptionally silent. However, little is known about selective regulation of individual rDNA units. In Drosophila melanogaster, some rDNA repeats contain insertions of the R2 retrotransposon, which is capable to be transcribed only as part of pre-rRNA molecules. rDNA units with R2 insertions are usually inactivated, although R2 expression may be beneficial in cells with decreased rDNA copy number. Here we found that R2-inserted rDNA units are enriched with HP1a and H3K9me3 repressive mark, whereas disruption of the heterochromatin components slightly affects their silencing in ovarian germ cells. Surprisingly, we observed a dramatic upregulation of R2-inserted rRNA genes in ovaries lacking Udd (Under-developed) or other subunits (TAF1b and TAF1c-like) of the SL1-like complex, which is homologues to mammalian Selective factor 1 (SL1) involved in rDNA transcription initiation. Derepression of rRNA genes with R2 insertions was accompanied by a reduction of H3K9me3 and HP1a enrichment. We suggest that the impairment of the SL1-like complex affects a mechanism of selective activation of intact rDNA units which competes with heterochromatin formation. We also propose that R2 derepression may serve as an adaptive response to compromised rRNA synthesis.


Asunto(s)
ADN Ribosómico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Heterocromatina/metabolismo , Proteínas Nucleares/metabolismo , Ribosomas/metabolismo , Factores de Transcripción/metabolismo , Animales , Retroelementos , Transcripción Genética
12.
Mar Drugs ; 22(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39057403

RESUMEN

Three new monosulfated polyhydroxysteroid glycosides, spiculiferosides A (1), B (2), and C (3), along with new related unsulfated monoglycoside, spiculiferoside D (4), were isolated from an ethanolic extract of the starfish Henricia leviuscula spiculifera collected in the Sea of Okhotsk. Compounds 1-3 contain two carbohydrate moieties, one of which is attached to C-3 of the steroid tetracyclic core, whereas another is located at C-24 of the side chain of aglycon. Two glycosides (2, 3) are biosides, and one glycoside (1), unlike them, includes three monosaccharide residues. Such type triosides are a rare group of polar steroids of sea stars. In addition, the 5-substituted 3-OSO3-α-L-Araf unit was found in steroid glycosides from starfish for the first time. Cell viability analysis showed that 1-3 (at concentrations up to 100 µM) had negligible cytotoxicity against human embryonic kidney HEK293, melanoma SK-MEL-28, breast cancer MDA-MB-231, and colorectal carcinoma HCT 116 cells. These compounds significantly inhibited proliferation and colony formation in HCT 116 cells at non-toxic concentrations, with compound 3 having the greatest effect. Compound 3 exerted anti-proliferative effects on HCT 116 cells through the induction of dose-dependent cell cycle arrest at the G2/M phase, regulation of expression of cell cycle proteins CDK2, CDK4, cyclin D1, p21, and inhibition of phosphorylation of protein kinases c-Raf, MEK1/2, ERK1/2 of the MAPK/ERK1/2 pathway.


Asunto(s)
Antineoplásicos , Glicósidos , Estrellas de Mar , Animales , Humanos , Estrellas de Mar/química , Glicósidos/farmacología , Glicósidos/química , Glicósidos/aislamiento & purificación , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Esteroides/farmacología , Esteroides/química , Esteroides/aislamiento & purificación , Proliferación Celular/efectos de los fármacos
13.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34385304

RESUMEN

Inflammation, the body's primary defensive response system to injury and infection, is triggered by molecular signatures of microbes and tissue injury. These molecules also stimulate specialized sensory neurons, termed nociceptors. Activation of nociceptors mediates inflammation through antidromic release of neuropeptides into infected or injured tissue, producing neurogenic inflammation. Because HMGB1 is an important inflammatory mediator that is synthesized by neurons, we reasoned nociceptor release of HMGB1 might be a component of the neuroinflammatory response. In support of this possibility, we show here that transgenic nociceptors expressing channelrhodopsin-2 (ChR2) directly release HMGB1 in response to light stimulation. Additionally, HMGB1 expression in neurons was silenced by crossing synapsin-Cre (Syn-Cre) mice with floxed HMGB1 mice (HMGB1f/f). When these mice undergo sciatic nerve injury to activate neurogenic inflammation, they are protected from the development of cutaneous inflammation and allodynia as compared to wild-type controls. Syn-Cre/HMGB1fl/fl mice subjected to experimental collagen antibody-induced arthritis, a disease model in which nociceptor-dependent inflammation plays a significant pathological role, are protected from the development of allodynia and joint inflammation. Thus, nociceptor HMGB1 is required to mediate pain and inflammation during sciatic nerve injury and collagen antibody-induced arthritis.


Asunto(s)
Proteína HMGB1/metabolismo , Neuronas/fisiología , Nociceptores/metabolismo , Animales , Anticuerpos/inmunología , Artritis/inducido químicamente , Células Cultivadas , Colágeno/inmunología , Citocinas/genética , Citocinas/metabolismo , Femenino , Ganglios Espinales/citología , Regulación de la Expresión Génica , Proteína HMGB1/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Neuropatía Ciática/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-38621374

RESUMEN

INTRODUCTION: Although previous studies have examined olfactory dysfunction in children, the novel coronavirus SARS-CoV-2 has certainly had an unprecedented effect on their olfaction, which could not be taken into consideration. The aim of this report was to present data on the epidemiology of olfactory dysfunction during the pandemic and compare this dataset with a pre-pandemic set. We hypothesized an increase in URTI-related olfactory dysfunction. METHODS: Data of paediatric patients consulting a smell and taste clinic between March 2020 and June 2022 were retrospectively analysed. The frequency of major causes of olfactory dysfunction was examined and compared with three subsets of an older dataset. RESULTS: A total of 52 patients were included in the analysis. Most children presented with olfactory dysfunction due to upper respiratory tract infection (URTI) (52%). Congenital olfactory dysfunction was present in 34% of cases. Sinonasal disorders and idiopathic cases accounted for 6 and 4%, respectively, whereas head trauma was the least common cause (2%). This was in contrast with the results of the older set. The frequency of URTI-related olfactory dysfunction increased significantly. The frequency of head-trauma-related or congenital olfactory dysfunction showed marked reductions. There were no significant differences regarding the other aetiologies between our patient cohort and the three subsets. CONCLUSION: The COVID-19 pandemic has resulted in differences regarding the prevalence of aetiologies between our dataset and the subsets of pre-pandemic times. The surge of the frequency of URTI-related olfactory dysfunction may be ascribed to a novel pathomechanism involving sustentacular cells in the olfactory epithelium.


Asunto(s)
COVID-19 , Trastornos del Olfato , Humanos , COVID-19/epidemiología , Trastornos del Olfato/epidemiología , Trastornos del Olfato/etiología , Trastornos del Olfato/virología , Niño , Femenino , Masculino , Estudios Retrospectivos , Preescolar , Adolescente , SARS-CoV-2 , Pandemias , Infecciones del Sistema Respiratorio/epidemiología , Lactante
15.
Sensors (Basel) ; 24(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38544114

RESUMEN

Pseudohexagonal Nb2O5 microcolumns spanning a size range of 50 to 610 nm were synthesized utilizing a cost-effective hydrothermal process (maintained at 180 °C for 30 min), followed by a subsequent calcination step at 500 °C for 3 h. Raman spectroscopy analysis unveiled three distinct reflection peaks at 220.04 cm-1, 602.01 cm-1, and 735.3 cm-1, indicative of the pseudohexagonal crystal lattice of Nb2O5. The HRTEM characterization confirmed the inter-lattice distance of 1.8 Å for the 110 plain and 3.17 Å for the 100 plain. The conductometry sensors were fabricated by drop-casting a dispersion of Nb2O5 microcolumns, in ethanol, on Pt electrodes. The fabricated sensors exhibited excellent selectivity in detecting C2H5OH (ΔG/G = 2.51 for 10 ppm C2H5OH) when compared to a variety of tested gases, including CO, CO2, NO2, H2, H2S, and C3H6O. The optimal operating temperature for this selective detection was determined to be 500 °C in a dry air environment. Moreover, the sensors demonstrated exceptional repeatability over the course of three testing cycles and displayed strong humidity resistance, even when exposed to 90% relative humidity. This excellent humidity resistance gas sensing property can be attributed to their nanoporous nature and elevated operating temperature.

16.
Nano Lett ; 23(11): 5250-5256, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37220075

RESUMEN

Structural or crystal asymmetry is a necessary condition for the emergence of zero-bias photocurrent in light detectors. Structural asymmetry has been typically achieved via p-n doping, which is a technologically complex process. Here, we propose an alternative approach to achieve zero-bias photocurrent in two-dimensional (2D) material flakes exploiting the geometrical nonequivalence of source and drain contacts. As a prototypical example, we equip a square-shaped flake of PdSe2 with mutually orthogonal metal leads. Upon uniform illumination with linearly polarized light, the device demonstrates nonzero photocurrent which flips its sign upon 90° polarization rotation. The origin of zero-bias photocurrent lies in a polarization-dependent lightning-rod effect. It enhances the electromagnetic field at one contact from the orthogonal pair and selectively activates the internal photoeffect at the respective metal-PdSe2 Schottky junction. The proposed technology of contact engineering is independent of a particular light-detection mechanism and can be extended to arbitrary 2D materials.

17.
Nano Lett ; 23(1): 220-226, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36546884

RESUMEN

Photoconductivity of novel materials is the key property of interest for design of photodetectors, optical modulators, and switches. Despite the photoconductivity of most novel 2d materials having been studied both theoretically and experimentally, the same is not true for 2d p-n junctions that are necessary blocks of most electronic devices. Here, we study the sub-terahertz photocoductivity of gapped bilayer graphene with electrically induced p-n junctions. We find a strong positive contribution from junctions to resistance, temperature resistance coefficient, and photoresistivity at cryogenic temperatures T ∼ 20 K. The contribution to these quantities from junctions exceeds strongly the bulk values at uniform channel doping even at small band gaps of ∼10 meV. We further show that positive junction photoresistance is a hallmark of interband tunneling, and not of intraband thermionic conduction. Our results point to the possibility of creating various interband tunneling devices based on bilayer graphene, including steep-switching transistors and selective sensors.

18.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612916

RESUMEN

Eukaryotic REV1 serves as a scaffold protein for the coordination of DNA polymerases during DNA translesion synthesis. Besides this structural role, REV1 is a Y-family DNA polymerase with its own distributive deoxycytidyl transferase activity. However, data about the accuracy and efficiency of DNA synthesis by REV1 in the literature are contrasting. Here, we expressed and purified the full-length human REV1 from Saccharomyces cerevisiae and characterized its activity on undamaged DNA and a wide range of damaged DNA templates. We demonstrated that REV1 carried out accurate synthesis opposite 8-oxoG and O6-meG with moderate efficiency. It also replicated thymine glycol surprisingly well in an error-prone manner, but was blocked by the intrastrand 1,2-GG cisplatin crosslink. By using the 1,N6-ethenoadenine and 7-deaza-adenine lesions, we have provided biochemical evidence of the importance for REV1 functioning of the Hoogsteen face of template A, the second preferable template after G.


Asunto(s)
Adenina , Humanos , Cisplatino , Daño del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN , Nucleotidiltransferasas/genética , Saccharomyces cerevisiae/genética
19.
J Headache Pain ; 25(1): 111, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982389

RESUMEN

BACKGROUND: Pediatric headache is an increasing medical problem that has adverse effects on children's quality of life, academic performance, and social functioning. Children with primary headaches exhibit enhanced sensory sensitivity compared to their healthy peers. However, comprehensive investigations including multimodal sensory sensitivity assessment are lacking. This study aimed to compare sensory sensitivity of children with primary headaches with their healthy peers across multiple sensory domains. METHODS: The study included 172 participants aged 6 to 17 years (M = 13.09, SD = 3.02 years; 120 girls). Of these 80 participants were patients with migraine, 23 were patients with tension-type headache, and 69 were healthy controls. The following sensory measures were obtained: Mechanical Detection Threshold (MDT), Mechanical Pain Threshold (MPT), Mechanical Pain Sensitivity (MPS), detection and pain threshold for Transcutaneous Electrical Nerve Stimulation (TENS), olfactory and intranasal trigeminal detection threshold, and odor identification ability. Sensory sensitivity was compared between groups with a series of Kruskal-Wallis tests. Binomial regression models were used to compare the relative utility of sensory sensitivity measures in classifying participants into patients and healthy controls, as well as into patients with migraine and tension-type headache. RESULTS: Patients with migraine had lower MPT measured at the forearm than patients with tension-type headaches and healthy controls. MPS was higher in patients with migraine than in healthy controls. All patients with headaches had lower detection threshold of TENS and higher olfactory sensitivity. Healthy controls showed increased intranasal trigeminal sensitivity. Scores in MPS, TENS, and olfactory and trigeminal thresholds were significantly predicting presence of primary headaches. Additionally, scores in MPT, olfactory and trigeminal threshold were positive predictors of type of headache. CONCLUSIONS: Children with primary headaches exhibit different sensory profiles than healthy controls. The obtained results suggest presence of increased overall, multimodal sensitivity in children with primary headaches, what may negatively impact daily functioning and contribute to further pain chronification. TRIAL REGISTRATION: The study was registered in the German Registry of Clinical Trials (DRKS) DRKS00021062.


Asunto(s)
Trastornos Migrañosos , Umbral del Dolor , Cefalea de Tipo Tensional , Humanos , Adolescente , Femenino , Masculino , Niño , Cefalea de Tipo Tensional/fisiopatología , Cefalea de Tipo Tensional/diagnóstico , Trastornos Migrañosos/fisiopatología , Trastornos Migrañosos/diagnóstico , Umbral del Dolor/fisiología , Umbral Sensorial/fisiología , Cefaleas Primarias/fisiopatología , Cefaleas Primarias/diagnóstico
20.
Mol Med ; 29(1): 149, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907853

RESUMEN

BACKGROUND: Acute pancreatitis is a common and serious inflammatory condition currently lacking disease modifying therapy. The cholinergic anti-inflammatory pathway (CAP) is a potent protective anti-inflammatory response activated by vagus nerve-dependent α7 nicotinic acetylcholine receptor (α7nAChR) signaling using splenic CD4+ T cells as an intermediate. Activating the CAP ameliorates experimental acute pancreatitis. Galantamine is an acetylcholinesterase inhibitor (AChEI) which amplifies the CAP via modulation of central muscarinic ACh receptors (mAChRs). However, as mAChRs also activate pancreatitis, it is currently unknown whether galantamine would be beneficial in acute pancreatitis. METHODS: The effect of galantamine (1-6 mg/kg-body weight) on caerulein-induced acute pancreatitis was evaluated in mice. Two hours following 6 hourly doses of caerulein (50 µg/kg-body weight), organ and serum analyses were performed with accompanying pancreatic histology. Experiments utilizing vagotomy, gene knock out (KO) technology and the use of nAChR antagonists were also performed. RESULTS: Galantamine attenuated pancreatic histologic injury which was mirrored by a reduction in serum amylase and pancreatic inflammatory cytokines and an increase the anti-inflammatory cytokine IL-10 in the serum. These beneficial effects were not altered by bilateral subdiaphragmatic vagotomy, KO of either choline acetyltransferase+ T cells or α7nAChR, or administration of the nAChR ganglionic blocker mecamylamine or the more selective α7nAChR antagonist methyllycaconitine. CONCLUSION: Galantamine improves acute pancreatitis via a mechanism which does not involve previously established physiological and molecular components of the CAP. As galantamine is an approved drug in widespread clinical use with an excellent safety record, our findings are of interest for further evaluating the potential benefits of this drug in patients with acute pancreatitis.


Asunto(s)
Galantamina , Pancreatitis , Humanos , Ratones , Animales , Galantamina/farmacología , Galantamina/uso terapéutico , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/uso terapéutico , Ceruletida/metabolismo , Ceruletida/uso terapéutico , Enfermedad Aguda , Pancreatitis/tratamiento farmacológico , Pancreatitis/patología , Citocinas/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Peso Corporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA