Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
RNA Biol ; 21(1): 1-17, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38711165

RESUMEN

Spliceosome assembly contributes an important but incompletely understood aspect of splicing regulation. Prp45 is a yeast splicing factor which runs as an extended fold through the spliceosome, and which may be important for bringing its components together. We performed a whole genome analysis of the genetic interaction network of the truncated allele of PRP45 (prp45(1-169)) using synthetic genetic array technology and found chromatin remodellers and modifiers as an enriched category. In agreement with related studies, H2A.Z-encoding HTZ1, and the components of SWR1, INO80, and SAGA complexes represented prominent interactors, with htz1 conferring the strongest growth defect. Because the truncation of Prp45 disproportionately affected low copy number transcripts of intron-containing genes, we prepared strains carrying intronless versions of SRB2, VPS75, or HRB1, the most affected cases with transcription-related function. Intron removal from SRB2, but not from the other genes, partly repaired some but not all the growth phenotypes identified in the genetic screen. The interaction of prp45(1-169) and htz1Δ was detectable even in cells with SRB2 intron deleted (srb2Δi). The less truncated variant, prp45(1-330), had a synthetic growth defect with htz1Δ at 16°C, which also persisted in the srb2Δi background. Moreover, htz1Δ enhanced prp45(1-330) dependent pre-mRNA hyper-accumulation of both high and low efficiency splicers, genes ECM33 and COF1, respectively. We conclude that while the expression defects of low expression intron-containing genes contribute to the genetic interactome of prp45(1-169), the genetic interactions between prp45 and htz1 alleles demonstrate the sensitivity of spliceosome assembly, delayed in prp45(1-169), to the chromatin environment.


Asunto(s)
Intrones , Fenotipo , Empalme del ARN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Empalmosomas , Empalmosomas/metabolismo , Empalmosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Histonas/metabolismo , Histonas/genética
2.
RNA ; 23(10): 1512-1524, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28701519

RESUMEN

Splicing in S. cerevisiae has been shown to proceed cotranscriptionally, but the nature of the coupling remains a subject of debate. Here, we examine the effect of nineteen complex-related splicing factor Prp45 (a homolog of SNW1/SKIP) on cotranscriptional splicing. RNA-sequencing and RT-qPCR showed elevated pre-mRNA levels but only limited reduction of spliced mRNAs in cells expressing C-terminally truncated Prp45, Prp45(1-169). Assays with a series of reporters containing the AMA1 intron with regulatable splicing confirmed decreased splicing efficiency and showed the leakage of unspliced RNAs in prp45(1-169) cells. We also measured pre-mRNA accumulation of the meiotic MER2 gene, which depends on the expression of Mer1 factor for splicing. prp45(1-169) cells accumulated approximately threefold higher levels of MER2 pre-mRNA than WT cells only when splicing was induced. To monitor cotranscriptional splicing, we determined the presence of early spliceosome assembly factors and snRNP complexes along the ECM33 and ACT1 genes. We found that prp45(1-169) hampered the cotranscriptional recruitment of U2 and, to a larger extent, U5 and NTC, while the U1 profile was unaffected. The recruitment of Prp45(1-169) was impaired similarly to U5 snRNP and NTC. Our results imply that Prp45 is required for timely formation of complex A, prior to stable physical association of U5/NTC with the emerging pre-mRNA substrate. We suggest that Prp45 facilitates conformational rearrangements and/or contacts that couple U1 snRNP-recognition to downstream assembly events.


Asunto(s)
Empalme del ARN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , Intrones , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 39(22): 9759-67, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21893588

RESUMEN

Higher order RNA structures can mask splicing signals, loop out exons, or constitute riboswitches all of which contributes to the complexity of splicing regulation. We identified a G to A substitution between branch point (BP) and 3' splice site (3'ss) of Saccharomyces cerevisiae COF1 intron, which dramatically impaired its splicing. RNA structure prediction and in-line probing showed that this mutation disrupted a stem in the BP-3'ss region. Analyses of various COF1 intron modifications revealed that the secondary structure brought about the reduction of BP to 3'ss distance and masked potential 3'ss. We demonstrated the same structural requisite for the splicing of UBC13 intron. Moreover, RNAfold predicted stable structures for almost all distant BP introns in S. cerevisiae and for selected examples in several other Saccharomycotina species. The employment of intramolecular structure to localize 3'ss for the second splicing step suggests the existence of pre-mRNA structure-based mechanism of 3'ss recognition.


Asunto(s)
Intrones , Sitios de Empalme de ARN , Empalme del ARN , ARN de Hongos/química , Saccharomyces cerevisiae/genética , Ascomicetos/genética , Secuencia de Bases , Cofilina 1/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/genética , Temperatura , Enzimas Ubiquitina-Conjugadoras/genética
4.
J Cell Biochem ; 106(1): 139-51, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19016306

RESUMEN

Human transcription co-regulator SNW1/SKIP is implicated in the regulation of both transcription elongation and alternative splicing. Prp45, the SNW/SKIP ortholog in yeast, is assumed to be essential for pre-mRNA processing. Here, we characterize prp45(1-169), a temperature sensitive allele of PRP45, which at permissive temperature elicits cell division defects and hypersensitivity to microtubule inhibitors. Using a synthetic lethality screen, we found that prp45(1-169) genetically interacts with alleles of NTC members SYF1, CLF1/SYF3, NTC20, and CEF1, and 2nd step splicing factors SLU7, PRP17, PRP18, and PRP22. Cwc2-associated spliceosomal complexes purified from prp45(1-169) cells showed decreased stoichiometry of Prp22, suggesting its deranged interaction with the spliceosome. In vivo splicing assays in prp45(1-169) cells revealed that branch point mutants accumulated more pre-mRNA whereas 5' and 3' splice site mutants showed elevated levels of lariat-exon intermediate as compared to wild-type cells. Splicing of canonical intron was unimpeded. Notably, the expression of Prp45(119-379) in prp45(1-169) cells restored Prp22 partition in the Cwc2-pulldowns and rescued temperature sensitivity and splicing phenotype of prp45(1-169) strain. Our data suggest that Prp45 contributes, in part through its interaction with the 2nd step-proofreading helicase Prp22, to splicing efficiency of substrates non-conforming to the consensus.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Empalme del ARN , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , Alelos , Secuencia de Aminoácidos , ARN Helicasas DEAD-box/genética , Intrones , Datos de Secuencia Molecular , Mutación , Fenotipo , Precursores del ARN/metabolismo , Factores de Empalme de ARN , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA