Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell Mol Life Sci ; 80(8): 236, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524863

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an adult devastating neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), resulting in progressive paralysis and death. Genetic animal models of ALS have highlighted dysregulation of synaptic structure and function as a pathogenic feature of ALS-onset and progression. Alternative pre-mRNA splicing (AS), which allows expansion of the coding power of genomes by generating multiple transcript isoforms from each gene, is widely associated with synapse formation and functional specification. Deciphering the link between aberrant splicing regulation and pathogenic features of ALS could pave the ground for novel therapeutic opportunities. Herein, we found that neural progenitor cells (NPCs) derived from the hSOD1G93A mouse model of ALS displayed increased proliferation and propensity to differentiate into neurons. In parallel, hSOD1G93A NPCs showed impaired splicing patterns in synaptic genes, which could contribute to the observed phenotype. Remarkably, master splicing regulators of the switch from stemness to neural differentiation are de-regulated in hSOD1G93A NPCs, thus impacting the differentiation program. Our data indicate that hSOD1G93A mutation impacts on neurogenesis by increasing the NPC pool in the developing mouse cortex and affecting their intrinsic properties, through the establishment of a specific splicing program.

2.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542223

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is considered the prototype of motor neuron disease, characterized by motor neuron loss and muscle waste. A well-established pathogenic hallmark of ALS is mitochondrial failure, leading to bioenergetic deficits. So far, pharmacological interventions for the disease have proven ineffective. Trimetazidine (TMZ) is described as a metabolic modulator acting on different cellular pathways. Its efficacy in enhancing muscular and cardiovascular performance has been widely described, although its molecular target remains elusive. We addressed the molecular mechanisms underlying TMZ action on neuronal experimental paradigms. To this aim, we treated murine SOD1G93A-model-derived primary cultures of cortical and spinal enriched motor neurons, as well as a murine motor-neuron-like cell line overexpressing SOD1G93A, with TMZ. We first characterized the bioenergetic profile of the cell cultures, demonstrating significant mitochondrial dysfunction that is reversed by acute TMZ treatments. We then investigated the effect of TMZ in promoting autophagy processes and its impact on mitochondrial morphology. Finally, we demonstrated the effectiveness of TMZ in terms of the mitochondrial functionality of ALS-rpatient-derived peripheral blood mononuclear cells (PBMCs). In summary, our results emphasize the concept that targeting mitochondrial dysfunction may represent an effective therapeutic strategy for ALS. The findings demonstrate that TMZ enhances mitochondrial performance in motor neuron cells by activating autophagy processes, particularly mitophagy. Although further investigations are needed to elucidate the precise molecular pathways involved, these results hold critical implications for the development of more effective and specific derivatives of TMZ for ALS treatment.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Mitocondriales , Trimetazidina , Ratones , Animales , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Superóxido Dismutasa-1/metabolismo , Trimetazidina/farmacología , Trimetazidina/uso terapéutico , Ratones Transgénicos , Leucocitos Mononucleares/metabolismo , Superóxido Dismutasa/metabolismo , Autofagia , Modelos Animales de Enfermedad
3.
J Integr Neurosci ; 21(6): 165, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36424753

RESUMEN

BACKGROUND: Monoamine oxidase type B inhibitors (iMAO-Bs) are a class of largely-used antiparkinsonian agents that, based on experimental evidence, are supposed to exert different degrees of neuroprotection in Parkinson's disease (PD). However, clinical proofs on this regard are very scarce. Since cerebrospinal fluid (CSF) reflects pathological changes occurring at brain level, we examined the neurodegeneration-related CSF biomarkers profile of PD patients under chronic treatment with different iMAO-Bs to identify biochemical signatures suggestive for differential neurobiological effects. METHODS: Thirty-five PD patients under chronic treatment with different iMAO-Bs in add-on to levodopa were enrolled and grouped in rasagiline (n = 13), selegiline (n = 9), safinamide (n = 13). Respective standard clinical scores for motor and non-motor disturbances, together with CSF biomarkers of neurodegeneration levels (amyloid- ß -42, amyloid- ß -40, total and 181-phosphorylated tau, and lactate) were collected and compared among the three iMAO-B groups. RESULTS: No significant clinical differences emerged among the iMAO-B groups. CSF levels of tau proteins and lactate were instead different, resulting higher in patients under selegiline than in those under rasagiline and safinamide. CONCLUSIONS: Although preliminary and limited, this study indicates that patients under different iMAO-Bs may present distinct profiles of CSF neurodegeneration-related biomarkers, probably because of the differential neurobiological effects of the drugs. Larger studies are now needed to confirm and extend these initial observations.


Asunto(s)
Inhibidores de la Monoaminooxidasa , Enfermedad de Parkinson , Humanos , Biomarcadores , Lactatos , Enfermedad de Parkinson/tratamiento farmacológico , Selegilina/uso terapéutico , Inhibidores de la Monoaminooxidasa/uso terapéutico
4.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36142777

RESUMEN

Mitochondria are central in the pathogenesis of Parkinson's disease (PD), as they are involved in oxidative stress, synaptopathy, and other immunometabolic pathways. Accordingly, they are emerging as a potential neuroprotection target, although further human-based evidence is needed for therapeutic advancements. This study aims to shape the pattern of mitochondrial respiration in the blood leukocytes of PD patients in relation to both clinical features and the profile of cerebrospinal fluid (CSF) biomarkers of neurodegeneration. Mitochondrial respirometry on the peripheral blood mononucleate cells (PBMCs) of 16 PD patients and 14 controls was conducted using Seahorse Bioscience technology. Bioenergetic parameters were correlated either with standard clinical scores for motor and non-motor disturbances or with CSF levels of α-synuclein, amyloid-ß peptides, and tau proteins. In PD, PBMC mitochondrial basal respiration was normal; maximal and spare respiratory capacities were both increased; and ATP production was higher, although not significantly. Maximal and spare respiratory capacity was directly correlated with disease duration, MDS-UPDRS part III and Hoehn and Yahr motor scores; spare respiratory capacity was correlated with the CSF amyloid-ß-42 to amyloid-ß-42/40 ratio. We provided preliminary evidence showing that mitochondrial respiratory activity increases in the PBMCs of PD patients, probably following the compensatory adaptations to disease progression, in contrast to the bases of the neuropathological substrate.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Adenosina Trifosfato , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores , Humanos , Leucocitos Mononucleares/patología , Mitocondrias/patología , Enfermedad de Parkinson/patología , Fragmentos de Péptidos/líquido cefalorraquídeo , Respiración , alfa-Sinucleína/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo
5.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199513

RESUMEN

Intrinsic disorder is a natural feature of polypeptide chains, resulting in the lack of a defined three-dimensional structure. Conformational changes in intrinsically disordered regions of a protein lead to unstable ß-sheet enriched intermediates, which are stabilized by intermolecular interactions with other ß-sheet enriched molecules, producing stable proteinaceous aggregates. Upon misfolding, several pathways may be undertaken depending on the composition of the amino acidic string and the surrounding environment, leading to different structures. Accumulating evidence is suggesting that the conformational state of a protein may initiate signalling pathways involved both in pathology and physiology. In this review, we will summarize the heterogeneity of structures that are produced from intrinsically disordered protein domains and highlight the routes that lead to the formation of physiological liquid droplets as well as pathogenic aggregates. The most common proteins found in aggregates in neurodegenerative diseases and their structural variability will be addressed. We will further evaluate the clinical relevance and future applications of the study of the structural heterogeneity of protein aggregates, which may aid the understanding of the phenotypic diversity observed in neurodegenerative disorders.


Asunto(s)
Enfermedades Neurodegenerativas/genética , Agregado de Proteínas/genética , Agregación Patológica de Proteínas/genética , Conformación Proteica en Lámina beta , Amiloide/genética , Amiloide/ultraestructura , Humanos , Proteínas Intrínsecamente Desordenadas , Enfermedades Neurodegenerativas/patología , alfa-Sinucleína/genética , alfa-Sinucleína/ultraestructura , Proteínas tau/genética , Proteínas tau/ultraestructura
6.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153123

RESUMEN

Skeletal muscle atrophy is a pathological condition so far without effective treatment and poorly understood at a molecular level. Emerging evidence suggest a key role for circular RNAs (circRNA) during myogenesis and their deregulation has been reported to be associated with muscle diseases. Spermine oxidase (SMOX), a polyamine catabolic enzyme plays a critical role in muscle differentiation and the existence of a circRNA arising from SMOX gene has been recently identified. In this study, we evaluated the expression profile of circular and linear SMOX in both C2C12 differentiation and dexamethasone-induced myotubes atrophy. To validate our findings in vivo their expression levels were also tested in two murine models of amyotrophic lateral sclerosis: SOD1G93A and hFUS+/+, characterized by progressive muscle atrophy. During C2C12 differentiation, linear and circular SMOX show the same trend of expression. Interestingly, in atrophy circSMOX levels significantly increased compared to the physiological state, in both in vitro and in vivo models. Our study demonstrates that SMOX represents a new player in muscle physiopathology and provides a scientific basis for further investigation on circSMOX RNA as a possible new therapeutic target for the treatment of muscle atrophy.


Asunto(s)
Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , ARN Circular/fisiología , ARN Mensajero/fisiología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Diferenciación Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/fisiología , ARN no Traducido/fisiología , Proteína FUS de Unión a ARN/genética , Superóxido Dismutasa-1/genética , Poliamino Oxidasa
7.
J Neurochem ; 146(5): 585-597, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29779213

RESUMEN

TAR DNA-binding protein 43 (TDP-43) is an RNA-binding protein and a major component of protein aggregates found in amyotrophic lateral sclerosis and several other neurodegenerative diseases. TDP-43 exists as a full-length protein and as two shorter forms of 25 and 35 kDa. Full-length mutant TDP-43s found in amyotrophic lateral sclerosis patients re-localize from the nucleus to the cytoplasm and in part to mitochondria, where they exert a toxic role associated with neurodegeneration. However, induction of mitochondrial damage by TDP-43 fragments is yet to be clarified. In this work, we show that the mitochondrial 35 kDa truncated form of TDP-43 is restricted to the intermembrane space, while the full-length forms also localize in the mitochondrial matrix in cultured neuronal NSC-34 cells. Interestingly, the full-length forms clearly affect mitochondrial metabolism and morphology, possibly via their ability to inhibit the expression of Complex I subunits encoded by the mitochondrial-transcribed mRNAs, while the 35 kDa form does not. In the light of the known differential contribution of the full-length and short isoforms to generate toxic aggregates, we propose that the presence of full-length TDP-43s in the matrix is a primary cause of mitochondrial damage. This in turn may cause oxidative stress inducing toxic oligomers formation, in which short TDP-43 forms play a major role.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo , Neuronas , Oligonucleótidos/toxicidad , Isoformas de Proteínas/metabolismo , Línea Celular Transformada , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Chaperonina 60/genética , Chaperonina 60/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Citosol/ultraestructura , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Inmunoprecipitación , Microscopía Electrónica , Mitocondrias/efectos de los fármacos , Mutación/efectos de los fármacos , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/ultraestructura , Consumo de Oxígeno/efectos de los fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/ultraestructura , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Transfección
8.
Biochim Biophys Acta ; 1840(1): 255-61, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24041990

RESUMEN

BACKGROUND: Glutaredoxin 1 (Grx1), a small protein belonging to the thioredoxin family, is involved in redox-regulation since it catalyzes the reduction of protein disulfides and that of mixed disulfides. It was reported to modulate active copper extrusion from cells, by affecting the function of the pumps ATP7A and B. These are components of the network of protein chaperones involved in the control of the homeostasis of copper, an essential, though harmful, metal. However, the effect of Grx1 on copper levels, copper chaperones and copper-elicited cell toxicity was never investigated. METHODS: In order to investigate the effect of Grx1 on copper metabolism, we constitutively overexpressed Grx1 in human neuroblastoma SH-SY5Y cells (SH-Grx1 cells) and assessed a number of copper-related parameters. RESULTS: SH-Grx1 cells show a basal intracellular copper level higher than control cells, accumulate more copper upon CuSO4 treatment, but are more resistant to copper-induced toxicity. Grx1 shows copper-binding properties and copper overload produces a decrease of Grx1 enzyme activity in SH-Grx1 cells. Finally, Grx1 overexpression decreases copper accumulation in mitochondria upon copper overload and modulates the expression of copper transporter 1 (Ctr1). CONCLUSION: Altogether, these data demonstrate that Grx1 is a major player in copper metabolism in neuronal cells.


Asunto(s)
Apoptosis , Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Mitocondrias/metabolismo , Neuroblastoma/patología , Western Blotting , Proteínas de Transporte de Catión/genética , Proliferación Celular , Cromatografía de Afinidad , Transportador de Cobre 1 , Glutarredoxinas/genética , Humanos , Mitocondrias/patología , Neuroblastoma/genética , Neuroblastoma/metabolismo , Oxidación-Reducción , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Células Tumorales Cultivadas
9.
Mol Cell Neurosci ; 55: 44-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22705710

RESUMEN

Evidence from patients with sporadic and familiar amyotrophic lateral sclerosis (ALS) and from models based on the overexpression of mutant SOD1 found in a small subset of patients, clearly point to mitochondrial damage as a relevant facet of this neurodegenerative condition. In this mini-review we provide a brief update on the subject in the light of newly discovered genes (such as TDP-43 and FUS/TLS) associated to familial ALS and of a deeper knowledge of the mechanisms of derangement of mitochondria. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Genes Mitocondriales , Mitocondrias/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Mitocondrias/genética , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo
10.
Front Cell Dev Biol ; 12: 1421566, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156974

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal disorder characterized by the selective degeneration of upper and lower motor neurons, leading to progressive muscle weakness and atrophy. The mean survival time is two to five years. Although the hunt for drugs has greatly advanced over the past decade, no cure is available for ALS yet. The role of intense physical activity in the etiology of ALS has been debated for several decades without reaching a clear conclusion. The benefits of organized physical activity on fitness and mental health have been widely described. Indeed, by acting on specific mechanisms, physical activity can influence the physiology of several chronic conditions. It was shown to improve skeletal muscle metabolism and regeneration, neurogenesis, mitochondrial biogenesis, and antioxidant defense. Interestingly, all these pathways are involved in ALS pathology. This review will provide a broad overview of the effect of different exercise protocols on the onset and progression of ALS, both in humans and in animal models. Furthermore, we will discuss challenges and opportunities to exploit physiological responses of imposed exercise training for therapeutic purposes.

11.
Front Pharmacol ; 15: 1360099, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590640

RESUMEN

Background: Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease characterized by the degeneration of motor neurons that leads to muscle wasting and atrophy. Epidemiological and experimental evidence suggests a causal relationship between ALS and physical activity (PA). However, the impact of PA on motor neuron loss and sarcopenia is still debated, probably because of the heterogeneity and intensities of the proposed exercises. With this study, we aimed to clarify the effect of intense endurance exercise on the onset and progression of ALS in the SOD1-G93A mouse model. Methods: We randomly selected four groups of twelve 35-day-old female mice. SOD1-G93A and WT mice underwent intense endurance training on a motorized treadmill for 8 weeks, 5 days a week. During the training, we measured muscle strength, weight, and motor skills and compared them with the corresponding sedentary groups to define the disease onset. At the end of the eighth week, we analyzed the skeletal muscle-motor neuron axis by histological and molecular techniques. Results: Intense endurance exercise anticipates the onset of the disease by 1 week (age of the onset: trained SOD1-G93A = 63.17 ± 2.25 days old; sedentary SOD1-G93A = 70.75 ± 2.45 days old). In SOD1-G93A mice, intense endurance exercise hastens the muscular switch to a more oxidative phenotype and worsens the denervation process by dismantling neuromuscular junctions in the tibialis anterior, enhancing the Wallerian degeneration in the sciatic nerve, and promoting motor neuron loss in the spinal cord. The training exacerbates neuroinflammation, causing immune cell infiltration in the sciatic nerve and a faster activation of astrocytes and microglia in the spinal cord. Conclusion: Intense endurance exercise, acting on skeletal muscles, worsens the pathological hallmarks of ALS, such as denervation and neuroinflammation, brings the onset forward, and accelerates the progression of the disease. Our findings show the potentiality of skeletal muscle as a target for both prognostic and therapeutic strategies; the preservation of skeletal muscle health by specific intervention could counteract the dying-back process and protect motor neurons from death. The physiological characteristics and accessibility of skeletal muscle further enhance its appeal as a therapeutic target.

12.
Mol Neurobiol ; 60(11): 6346-6361, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37450246

RESUMEN

The TAR-DNA binding protein (TDP43) is a nuclear protein whose cytoplasmic inclusions are hallmarks of Amyotrophic Lateral Sclerosis (ALS). Acute stress in cells causes TDP43 mobilization to the cytoplasm and its aggregation through different routes. Although acute stress elicits a strong phenotype, is far from recapitulating the years-long aggregation process. We applied different chronic stress protocols and described TDP43 aggregation in a human neuroblastoma cell line by combining solubility assays, thioflavin-based microscopy and flow cytometry. This approach allowed us to detect, for the first time to our knowledge in vitro, the formation of 25 kDa C-terminal fragment of TDP43, a pathogenic hallmark of ALS. Our results indicate that chronic stress, compared to the more common acute stress paradigm, better recapitulates the cell biology of TDP43 proteinopathies. Moreover, we optimized a protocol for the detection of bona fide prions in living cells, suggesting that TDP43 may form amyloids as a stress response.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Humanos , Esclerosis Amiotrófica Lateral/genética , Línea Celular , Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Neuroblastoma/metabolismo , Proteinopatías TDP-43/metabolismo
13.
Hum Mol Genet ; 19(22): 4529-42, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20829229

RESUMEN

Vulnerability of motoneurons in amyotrophic lateral sclerosis (ALS) arises from a combination of several mechanisms, including protein misfolding and aggregation, mitochondrial dysfunction and oxidative damage. Protein aggregates are found in motoneurons in models for ALS linked to a mutation in the gene coding for Cu,Zn superoxide dismutase (SOD1) and in ALS patients as well. Aggregation of mutant SOD1 in the cytoplasm and/or into mitochondria has been repeatedly proposed as a main culprit for the degeneration of motoneurons. It is, however, still debated whether SOD1 aggregates represent a cause, a correlate or a consequence of processes leading to cell death. We have exploited the ability of glutaredoxins (Grxs) to reduce mixed disulfides to protein thiols either in the cytoplasm and in the IMS (Grx1) or in the mitochondrial matrix (Grx2) as a tool for restoring a correct redox environment and preventing the aggregation of mutant SOD1. Here we show that the overexpression of Grx1 increases the solubility of mutant SOD1 in the cytosol but does not inhibit mitochondrial damage and apoptosis induced by mutant SOD1 in neuronal cells (SH-SY5Y) or in immortalized motoneurons (NSC-34). Conversely, the overexpression of Grx2 increases the solubility of mutant SOD1 in mitochondria, interferes with mitochondrial fragmentation by modifying the expression pattern of proteins involved in mitochondrial dynamics, preserves mitochondrial function and strongly protects neuronal cells from apoptosis. The toxicity of mutant SOD1, therefore, mostly arises from mitochondrial dysfunction and rescue of mitochondrial damage may represent a promising therapeutic strategy.


Asunto(s)
Glutarredoxinas/metabolismo , Mitocondrias/metabolismo , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Apoptosis/genética , Muerte Celular/genética , Línea Celular Transformada , Línea Celular Tumoral , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/ultraestructura , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Mutación , Neuroblastoma/patología , Neuronas/metabolismo , Oxidación-Reducción , Superóxido Dismutasa/biosíntesis , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
14.
Metabolites ; 12(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35323676

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of the upper and lower motor neurons. Despite the increasing effort in understanding the etiopathology of ALS, it still remains an obscure disease, and no therapies are currently available to halt its progression. Following the discovery of the first gene associated with familial forms of ALS, Cu-Zn superoxide dismutase, it appeared evident that mitochondria were key elements in the onset of the pathology. However, as more and more ALS-related genes were discovered, the attention shifted from mitochondria impairment to other biological functions such as protein aggregation and RNA metabolism. In recent years, mitochondria have again earned central, mechanistic roles in the pathology, due to accumulating evidence of their derangement in ALS animal models and patients, often resulting in the dysregulation of the energetic metabolism. In this review, we first provide an update of the last lustrum on the molecular mechanisms by which the most well-known ALS-related proteins affect mitochondrial functions and cellular bioenergetics. Next, we focus on evidence gathered from human specimens and advance the concept of a cellular-specific mitochondrial "metabolic threshold", which may appear pivotal in ALS pathogenesis.

15.
Cell Death Dis ; 13(8): 737, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028501

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare, fatal disease caused by Lamin A mutation, leading to altered nuclear architecture, loss of peripheral heterochromatin and deregulated gene expression. HGPS patients eventually die by coronary artery disease and cardiovascular alterations. Yet, how deregulated transcriptional networks at the cellular level impact on the systemic disease phenotype is currently unclear. A genome-wide analysis of gene expression in cultures of primary HGPS fibroblasts identified SerpinE1, also known as Plasminogen Activator Inhibitor (PAI-1), as central gene that propels a cell-autonomous pathogenic signaling from the altered nuclear lamina. Indeed, siRNA-mediated downregulation and pharmacological inhibition of SerpinE1 by TM5441 could revert key pathological features of HGPS in patient-derived fibroblasts, including re-activation of cell cycle progression, reduced DNA damage signaling, decreased expression of pro-fibrotic genes and recovery of mitochondrial defects. These effects were accompanied by the correction of nuclear abnormalities. These data point to SerpinE1 as a novel potential effector and target for therapeutic interventions in HGPS pathogenesis.


Asunto(s)
Inhibidor 1 de Activador Plasminogénico , Progeria , Núcleo Celular , Fibroblastos , Humanos , Lamina Tipo A , Inhibidor 1 de Activador Plasminogénico/metabolismo
16.
Br J Pharmacol ; 179(8): 1732-1752, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34783031

RESUMEN

BACKGROUND AND PURPOSE: Amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by the degeneration of upper and lower motor neurons, progressive wasting and paralysis of voluntary muscles and is currently incurable. Although considered to be a pure motor neuron disease, increasing evidence indicates that the sole protection of motor neurons by a single targeted drug is not sufficient to improve the pathological phenotype. We therefore evaluated the therapeutic potential of the multi-target drug used to treatment of coronary artery disease, trimetazidine, in SOD1G93A mice. EXPERIMENTAL APPROACH: As a metabolic modulator, trimetazidine improves glucose metabolism. Furthermore, trimetazidine enhances mitochondrial metabolism and promotes nerve regeneration, exerting an anti-inflammatory and antioxidant effect. We orally treated SOD1G93A mice with trimetazidine, solubilized in drinking water at a dose of 20 mg kg-1 , from disease onset. We assessed the impact of trimetazidine on disease progression by studying metabolic parameters, grip strength and histological alterations in skeletal muscle, peripheral nerves and the spinal cord. KEY RESULTS: Trimetazidine administration delays motor function decline, improves muscle performance and metabolism, and significantly extends overall survival of SOD1G93A mice (increased median survival of 16 days and 12.5 days for male and female respectively). Moreover, trimetazidine prevents the degeneration of neuromuscular junctions, attenuates motor neuron loss and reduces neuroinflammation in the spinal cord and in peripheral nerves. CONCLUSION AND IMPLICATIONS: In SOD1G93A mice, therapeutic effect of trimetazidine is underpinned by its action on mitochondrial function in skeletal muscle and spinal cord.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Trimetazidina , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos , Femenino , Masculino , Ratones , Ratones Transgénicos , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Trimetazidina/farmacología , Trimetazidina/uso terapéutico
17.
Cells ; 10(3)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801336

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the selective degeneration of upper and lower motor neurons and by the progressive weakness and paralysis of voluntary muscles. Despite intense research efforts and numerous clinical trials, it is still an incurable disease. ALS had long been considered a pure motor neuron disease; however, recent studies have shown that motor neuron protection is not sufficient to prevent the course of the disease since the dismantlement of neuromuscular junctions occurs before motor neuron degeneration. Skeletal muscle alterations have been described in the early stages of the disease, and they seem to be mainly involved in the "dying back" phenomenon of motor neurons and metabolic dysfunctions. In recent years, skeletal muscles have been considered crucial not only for the etiology of ALS but also for its treatment. Here, we review clinical and preclinical studies that targeted skeletal muscles and discuss the different approaches, including pharmacological interventions, supplements or diets, genetic modifications, and training programs.


Asunto(s)
Esclerosis Amiotrófica Lateral/complicaciones , Músculo Esquelético/fisiopatología , Humanos
18.
Brain Sci ; 11(6)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207086

RESUMEN

Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of spinal motor neurons as well as corticospinal (CSN) large pyramidal neurons within cortex layer V. An intense microglia immune response has been associated with both upper and lower motor neuron degeneration in ALS patients, whereas microgliosis occurrence in the motor cortex of hSOD1G93A mice-the best characterized model of this disease-is not clear and remains under debate. Since the impact of microglia cells in the neuronal environment seems to be crucial for both the initiation and the progression of the disease, here we analyzed the motor cortex of hSOD1G93A mice at the onset of symptoms by the immunolabeling of Iba1/TMEM119 double positive cells and confocal microscopy. By means of Sholl analysis, we were able to identify and quantify the presence of presumably activated Iba1/TMEM119-positive microglia cells with shorter and thicker processes as compared to the normal surveilling and more ramified microglia present in WT cortices. We strongly believe that being able to analyze microglia activation in the motor cortex of hSOD1G93A mice is of great importance for defining the timing and the extent of microglia involvement in CSN degeneration and for the identification of the initiation stages of this disease.

19.
Cells ; 10(6)2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207859

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive and selective loss of motor neurons, amyotrophy and skeletal muscle paralysis usually leading to death due to respiratory failure. While generally considered an intrinsic motor neuron disease, data obtained in recent years, including our own, suggest that motor neuron protection is not sufficient to counter the disease. The dismantling of the neuromuscular junction is closely linked to chronic energy deficit found throughout the body. Metabolic (hypermetabolism and dyslipidemia) and mitochondrial alterations described in patients and murine models of ALS are associated with the development and progression of disease pathology and they appear long before motor neurons die. It is clear that these metabolic changes participate in the pathology of the disease. In this review, we summarize these changes seen throughout the course of the disease, and the subsequent impact of glucose-fatty acid oxidation imbalance on disease progression. We also highlight studies that show that correcting this loss of metabolic flexibility should now be considered a major goal for the treatment of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Músculo Esquelético/metabolismo , Animales , Humanos , Masculino , Músculo Esquelético/patología , Superóxido Dismutasa-1/metabolismo
20.
Cells ; 10(12)2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34943907

RESUMEN

Neuroglobin (NGB) is an O2-binding globin mainly expressed in the central and peripheral nervous systems and cerebrospinal fluid. Previously, it was demonstrated that NGB overexpression protects cells from hypoxia-induced death. To investigate processes promoted by NGB overexpression, we used a cellular model of neuroblastoma stably overexpressing an NGB-FLAG construct. We used a proteomic approach to identify the specific profile following NGB overexpression. To evaluate the role of NGB overexpression in increasing energetic metabolism, we measured oxygen consumption rate (OCR) and the extracellular acidification rate through Seahorse XF technology. The effect on autophagy induction was evaluated by analyzing SQSTM1/p62 and LC3-II expression. Proteomic analysis revealed several differentially regulated proteins, involved in oxidative phosphorylation and integral mitochondrial proteins linked to energy metabolism. The analysis of mitochondrial metabolism demonstrated that NGB overexpression increases mitochondrial ATP production. Indeed, NGB overexpression enhances bioenergetic metabolism, increasing OCR and oxygen consumption. Analysis of autophagy induction revealed an increase of LC3-II together with a significant decrease of SQSTM1/p62, and NGB-LC3-II association during autophagosome formation. These results highlight the active participation of NGB in several cellular processes that can be upregulated in response to NGB overexpression, playing a role in the adaptive response to stress in neuroblastoma cells.


Asunto(s)
Autofagia/genética , Proteínas Asociadas a Microtúbulos/genética , Neuroblastoma/genética , Neuroglobina/genética , Proteína Sequestosoma-1/genética , Adenosina Trifosfato/genética , Línea Celular Tumoral , Metabolismo Energético/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Mitocondrias/genética , Neuroblastoma/patología , Consumo de Oxígeno/genética , Proteoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA