Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 46(16): 8197-8215, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-29986055

RESUMEN

A fundamental as yet incompletely understood feature of Notch signal transduction is a transcriptional shift from repression to activation that depends on chromatin regulation mediated by transcription factor RBP-J and associated cofactors. Incorporation of histone variants alter the functional properties of chromatin and are implicated in the regulation of gene expression. Here, we show that depletion of histone variant H2A.Z leads to upregulation of canonical Notch target genes and that the H2A.Z-chaperone TRRAP/p400/Tip60 complex physically associates with RBP-J at Notch-dependent enhancers. When targeted to RBP-J-bound enhancers, the acetyltransferase Tip60 acetylates H2A.Z and upregulates Notch target gene expression. Importantly, the Drosophila homologs of Tip60, p400 and H2A.Z modulate Notch signaling response and growth in vivo. Together, our data reveal that loading and acetylation of H2A.Z are required to assure tight control of canonical Notch activation.


Asunto(s)
Regulación de la Expresión Génica , Histonas/genética , Receptores Notch/genética , Transducción de Señal/genética , Acetilación , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Lisina Acetiltransferasa 5/genética , Lisina Acetiltransferasa 5/metabolismo , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo
2.
EMBO J ; 30(4): 756-69, 2011 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-21224847

RESUMEN

Notch signalling is crucial for the correct development and growth of numerous organs and tissues, and when subverted it can cause cancer. Loss of miR-8/200 microRNAs (miRNAs) is commonly observed in advanced tumours and correlates with their invasion and acquisition of stem-like properties. Here, we show that this miRNA family controls Notch signalling activation in Drosophila and human cells. In an overexpression screen, we identified the Drosophila miR-8 as a potent inhibitor of Notch-induced overgrowth and tumour metastasis. Gain and loss of mir-8 provoked developmental defects reminiscent of impaired Notch signalling and we demonstrated that miR-8 directly inhibits Notch ligand Serrate. Likewise, miR-200c and miR-141 directly inhibited JAGGED1, impeding proliferation of human metastatic prostate cancer cells. It has been suggested that JAGGED1 may also be important for metastases. Although in metastatic cancer cells, JAGGED1 modestly regulated ZEB1, the miR-200c's target in invasion, studies in Drosophila revealed that only concurrent overexpression of Notch and Zfh1/ZEB1 induced tumour metastases. Together, these data define a new way to attenuate or boost Notch signalling that may have clinical interest.


Asunto(s)
Crecimiento y Desarrollo/genética , MicroARNs/genética , MicroARNs/farmacología , MicroARNs/fisiología , Neoplasias/genética , Receptores Notch/antagonistas & inhibidores , Animales , Células CACO-2 , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/fisiología , Células Cultivadas , Secuencia Conservada , Proteínas de Drosophila , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Crecimiento y Desarrollo/efectos de los fármacos , Células HCT116 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/fisiología , Proteína Jagged-1 , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , MicroARNs/metabolismo , Familia de Multigenes/fisiología , Neoplasias/metabolismo , Receptores Notch/genética , Proteínas Serrate-Jagged , Transducción de Señal
3.
Nature ; 439(7075): 430-6, 2006 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-16437107

RESUMEN

Cancer is both a genetic and an epigenetic disease. Inactivation of tumour-suppressor genes by epigenetic changes is frequently observed in human cancers, particularly as a result of the modifications of histones and DNA methylation. It is therefore important to understand how these damaging changes might come about. By studying tumorigenesis in the Drosophila eye, here we identify two Polycomb group epigenetic silencers, Pipsqueak and Lola, that participate in this process. When coupled with overexpression of Delta, deregulation of the expression of Pipsqueak and Lola induces the formation of metastatic tumours. This phenotype depends on the histone-modifying enzymes Rpd3 (a histone deacetylase), Su(var)3-9 and E(z), as well as on the chromodomain protein Polycomb. Expression of the gene Retinoblastoma-family protein (Rbf) is downregulated in these tumours and, indeed, this downregulation is associated with DNA hypermethylation. Together, these results establish a mechanism that links the Notch-Delta pathway, epigenetic silencing pathways and cell-cycle control in the process of tumorigenesis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Epigénesis Genética/genética , Silenciador del Gen , Genes de Retinoblastoma/genética , Receptores Notch/metabolismo , Retinoblastoma/genética , Retinoblastoma/patología , Acetilación , Animales , Islas de CpG/genética , Metilación de ADN , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Histona Desacetilasa 1 , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/genética , Fenotipo , Complejo Represivo Polycomb 1 , Regiones Promotoras Genéticas/genética , Receptores Notch/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Retinoblastoma/metabolismo , Proteína de Retinoblastoma/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética
4.
Cell Rep ; 28(10): 2715-2727.e5, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484080

RESUMEN

Evidence suggests that Polycomb (Pc) is present at chromatin loop anchors in Drosophila. Pc is recruited to DNA through interactions with the GAGA binding factors GAF and Pipsqueak (Psq). Using HiChIP in Drosophila cells, we find that the psq gene, which has diverse roles in development and tumorigenesis, encodes distinct isoforms with unanticipated roles in genome 3D architecture. The BR-C, ttk, and bab domain (BTB)-containing Psq isoform (PsqL) colocalizes genome-wide with known architectural proteins. Conversely, Psq lacking the BTB domain (PsqS) is consistently found at Pc loop anchors and at active enhancers, including those that respond to the hormone ecdysone. After stimulation by this hormone, chromatin 3D organization is altered to connect promoters and ecdysone-responsive enhancers bound by PsqS. Our findings link Psq variants lacking the BTB domain to Pc-bound active enhancers, thus shedding light into their molecular function in chromatin changes underlying the response to hormone stimulus.


Asunto(s)
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Ecdisona/farmacología , Elementos de Facilitación Genéticos/genética , Proteínas Nucleares/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Secuencias de Aminoácidos , Animales , Línea Celular , Proteínas de Drosophila/química , Drosophila melanogaster/efectos de los fármacos , Proteínas Nucleares/química , Complejo Represivo Polycomb 1/química , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Isoformas de Proteínas/metabolismo
5.
Science ; 350(6262): aac6767, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26429885

RESUMEN

Body-size constancy and symmetry are signs of developmental stability. Yet, it is unclear exactly how developing animals buffer size variation. Drosophila insulin-like peptide Dilp8 is responsive to growth perturbations and controls homeostatic mechanisms that coordinately adjust growth and maturation to maintain size within the normal range. Here we show that Lgr3 is a Dilp8 receptor. Through the use of functional and adenosine 3',5'-monophosphate assays, we defined a pair of Lgr3 neurons that mediate homeostatic regulation. These neurons have extensive axonal arborizations, and genetic and green fluorescent protein reconstitution across synaptic partners show that these neurons connect with the insulin-producing cells and prothoracicotropic hormone-producing neurons to attenuate growth and maturation. This previously unrecognized circuit suggests how growth and maturation rate are matched and co-regulated according to Dilp8 signals to stabilize organismal size.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Insulina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Adenosina Monofosfato/metabolismo , Animales , Tamaño Corporal , Encéfalo/citología , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Homeostasis , Hormonas de Insectos/genética , Hormonas de Insectos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Red Nerviosa/citología , Red Nerviosa/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética , Transducción de Señal , Sinapsis/metabolismo
6.
Dev Cell ; 27(2): 174-187, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24139822

RESUMEN

Neuroepithelial cell proliferation must be carefully balanced with the transition to neuroblast (neural stem cell) to control neurogenesis. Here, we show that loss of the Drosophila microRNA mir-8 (the homolog of vertebrate miR-200 family) results in both excess proliferation and ectopic neuroblast transition. Unexpectedly, mir-8 is expressed in a subpopulation of optic-lobe-associated cortex glia that extend processes that ensheath the neuroepithelium, suggesting that glia cells communicate with the neuroepithelium. We provide evidence that miR-8-positive glia express Spitz, a transforming growth factor α (TGF-α)-like ligand that triggers epidermal growth factor receptor (EGFR) activation to promote neuroepithelial proliferation and neuroblast formation. Further, our experiments suggest that miR-8 ensures both a correct glial architecture and the spatiotemporal control of Spitz protein synthesis via direct binding to Spitz 3' UTR. Together, these results establish glial-derived cues as key regulatory elements in the control of neuroepithelial cell proliferation and the neuroblast transition.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Factor de Crecimiento Epidérmico/metabolismo , Proteínas de la Membrana/metabolismo , MicroARNs/genética , Lóbulo Óptico de Animales no Mamíferos/crecimiento & desarrollo , Regiones no Traducidas 3' , Animales , Diferenciación Celular/genética , Proliferación Celular , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Activación Enzimática , Receptores ErbB/metabolismo , Células-Madre Neurales , Células Neuroepiteliales/metabolismo , Neurogénesis , Neuroglía/citología , Neuroglía/metabolismo , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Receptores de Péptidos de Invertebrados/metabolismo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA