Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(8): 3042-3052, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36790328

RESUMEN

While microplastic transport, fate, and effects have been a focus of studies globally, the consequences of their presence on ecosystem functioning have not received the same attention. With increasing evidence of the accumulation of microplastics at sediment-water interfaces there is a need to assess their impacts on ecosystem engineers, also known as bioturbators, which have direct and indirect effects on ecosystem health. This study investigated the impact of microplastics on the bioturbator Tubifex tubifex alongside any effects on the biogeochemical processes at the sediment-water interface. Bioturbators were exposed to four sediment microplastic concentrations: 0, 700, 7000, and 70000 particles kg-1 sediment dry weight. Though no mortality was present, a significant response to oxidative stress was detected in tubificid worms after exposure to medium microplastic concentration (7000 particles kg-1 sediment dry weight). This was accompanied by a reduction in worm bioturbation activities assessed by their ability to rework sediment and to stimulate exchange water fluxes at the sediment-water interface. Consequently, the contributions of tubificid worms on organic matter mineralization and nutrient fluxes were significantly reduced in the presence of microplastics. This study demonstrated that environmentally realistic microplastic concentrations had an impact on biogeochemical processes at the sediment-water interface by reducing the bioturbation activities of tubificid worms.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Ecosistema , Sedimentos Geológicos , Contaminantes Químicos del Agua/análisis , Agua Dulce , Agua , Monitoreo del Ambiente
2.
MethodsX ; 12: 102540, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38268517

RESUMEN

Recent studies on the distribution of microplastics in aquatic sediments have deployed different methods and devices for density separation of microplastics from sediments. However, instrument specific limitations have been noted, including their high cost, difficulty in handling, or/and the potential for elevated contamination risk due to their plastic composition. This study improves existing sediment microplastic separation techniques by modifying the commonly used conical shape glass separating funnels. The modification consists in connecting a silicone tube at the base of the funnel, whose opening and closure was manually controlled by a Mohr clamp. This adjustment made to the funnels have effectively mitigated critical clogging problems frequently encountered in density separation units. An experiment was conducted using sand-based sediment spiked with polyamide fragments to validate this method modification. Following a complete extraction protocol with the modification of separating funnels, the microplastic extraction efficiency from sediments was high with a 90% recovery rate. Based on these promising results, future studies should consider naturally diverse substrates, as recovery efficiency may be sediment-dependent. Two key adjustments to the glass separation funnels:•Removal of stopcocks•Use of silicone tubes and Mohr clamps to control sediment release.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA