RESUMEN
BACKGROUND: Relapse in pediatric acute myeloid leukemia (pedAML) patients is known to be associated with residual leukemic stem cells (LSC). We have previously shown that epithelial membrane protein 1 (EMP1) is significantly overexpressed in LSC compared to hematological stem cell fractions. EMP1 was also documented as part of the 17-gene stemness score and a 6-membrane protein gene score, both correlating high EMP1 expression with worse overall survival. However, its potential as a therapeutic target in pedAML is still unexplored. METHODS: Association analyses of EMP1 expression with clinical and molecular AML characteristics were performed. Expression of EMP1 was evaluated in pedAML and cord blood samples. Expression in normal blood cells and tissues was evaluated by flow cytometry and immunohistochemistry, respectively. RESULTS: In silico analyses showed variable mRNA expression of EMP1 in multiple pedAML datasets, and a significant correlation between high EMP1 transcript levels and the presence of inv(16). Flow cytometry showed overexpression of EMP1 in pedAML samples, as well as expression in normal blood subsets. Importantly, immunohistochemistry revealed EMP1 expression in multiple normal tissues. CONCLUSION: Although EMP1 presents as an interesting membrane-associated target in pedAML, its abundant expression in normal blood cells and tissues will impede it from further exploration as a therapeutic target. IMPACT: EMP1 is highly expressed in multiple cancer types, but expression in acute myeloid leukemia (AML) and normal tissues is unexplored. As EMP1 is investigated in other cancer types, expression in normal tissues and blood cells is relevant in predicting the success of EMP1-targeted therapies. In this study, we showed expression of EMP1 in multiple tissues, predicting high on-target off-tumor toxicity, which will warn other researchers of possible toxicities when generating EMP1-targeted therapy. Finally, we showed that high EMP1 expression is associated with better overall survival of pediatric AML patients, reducing the need for EMP1-targeted therapy.
RESUMEN
Conventional therapies for acute myeloid leukemia (AML) are characterized by high rates of relapse, severe toxicities, and poor overall survival rates. Thus, the development of new therapeutic strategies is crucial for improving the survival and quality of life of AML patients. CD19-directed chimeric antigen receptor (CAR) T-cell immunotherapy has been extremely successful in the treatment of B-cell acute lymphoid leukemia and several mature B-cell lymphomas. However, the use of CAR T-cell therapy for AML is currently prevented due to the lack of a myeloid equivalent to CD19, as currently known cell surface targets on leukemic blasts are also expressed on healthy hematopoietic stem and progenitor cells as well as their progeny. In addition, the immunosuppressive tumor microenvironment has a dampening effect on the antitumor activity of CAR-T cells. Here, we review the therapeutic challenges limiting the use of CAR T-cell therapy for AML and discuss promising novel strategies to overcome them.
RESUMEN
Pediatric acute myeloid leukemia (pedAML) is a heterogeneous blood cancer that affects children. Although survival rates have significantly improved over the past few decades, 20-30% of children will succumb due to treatment-related toxicity or relapse. The molecular characterization of the leukemic stem cell, shown to be responsible for relapse, is needed to improve treatment options and survival. Recently, it has become clear that non-coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), play a role in the development of human diseases, including pediatric cancer. Nevertheless, non-coding RNA expression data in pedAML are scarce. Here, we explored lncRNA (n = 30,168) and miRNA (n = 627) expression in pedAML subpopulations (leukemic stem cells (LSCs) and leukemic blasts (L-blasts)) and their normal counterparts (hematopoietic stem cells and control myeloblasts). The potential regulatory activity of differentially expressed lncRNAs in LSCs (unique or shared with the L-blast comparison) on miRNAs was assessed. Moreover, pre-ranked gene set enrichment analyses of (anti-) correlated protein-coding genes were performed to predict the functional relevance of the differentially upregulated lncRNAs in LSCs (unique or shared with the L-blast comparison). In conclusion, this study provides a catalog of non-coding RNAs with a potential role in the pathogenesis of pedAML, paving the way for further translational research studies.