RESUMEN
The heme enzyme chlorite dismutase (Cld) catalyzes the degradation of chlorite to chloride and dioxygen. Many questions about the molecular reaction mechanism of this iron protein have remained unanswered, including the electronic nature of the catalytically relevant oxoiron(IV) intermediate and its interaction with the distal, flexible, and catalytically active arginine. Here, we have investigated the dimeric Cld from Cyanothece sp. PCC7425 (CCld) and two variants having the catalytic arginine R127 (i) hydrogen-bonded to glutamine Q74 (wild-type CCld), (ii) arrested in a salt bridge with a glutamate (Q74E), or (iii) being fully flexible (Q74V). Presented stopped-flow spectroscopic studies demonstrate the initial and transient appearance of Compound I in the reaction between CCld and chlorite at pH 5.0 and 7.0 and the dominance of spectral features of an oxoiron(IV) species (418, 528, and 551 nm) during most of the chlorite degradation period at neutral and alkaline pH. Arresting the R127 in a salt bridge delays chlorite decomposition, whereas increased flexibility accelerates the reaction. The dynamics of R127 does not affect the formation of Compound I mediated by hypochlorite but has an influence on Compound I stability, which decreases rapidly with increasing pH. The decrease in activity is accompanied by the formation of protein-based amino acid radicals. Compound I is demonstrated to oxidize iodide, chlorite, and serotonin but not hypochlorite. Serotonin is able to dampen oxidative damage and inactivation of CCld at neutral and alkaline pH. Presented data are discussed with respect to the molecular mechanism of Cld and the pronounced pH dependence of chlorite degradation.
Asunto(s)
Arginina , Serotonina , Concentración de Iones de Hidrógeno , CinéticaRESUMEN
In this work, we have fabricated an aryl amino-substituted graphitic carbon nitride (g-C3N4) catalyst with atomically dispersed Mn capable of generating hydrogen peroxide (H2O2) directly from seawater. This new catalyst exhibited excellent reactivity, obtaining up to 2230 µM H2O2 in 7 h from alkaline water and up to 1800 µM from seawater under identical conditions. More importantly, the catalyst was quickly recovered for subsequent reuse without appreciable loss in performance. Interestingly, unlike the usual two-electron oxygen reduction reaction pathway, the generation of H2O2 was through a less common two-electron water oxidation reaction (WOR) process in which both the direct and indirect WOR processes occurred; namely, photoinduced h+ directly oxidized H2O to H2O2 via a one-step 2e- WOR, and photoinduced h+ first oxidized a hydroxide (OH-) ion to generate a hydroxy radical (â¢OH), and H2O2 was formed indirectly by the combination of two â¢OH. We have characterized the material, at the catalytic sites, at the atomic level using electron paramagnetic resonance, X-ray absorption near edge structure, extended X-ray absorption fine structure, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, magic-angle spinning solid-state NMR spectroscopy, and multiscale molecular modeling, combining classical reactive molecular dynamics simulations and quantum chemistry calculations.
RESUMEN
Electron-withdrawing perfluoroalkyl peripheral groups grafted on phthalocyanine (Pc) macrocycles improve their single-site isolation, solubility, and resistance to self-oxidation, all beneficial features for catalytic applications. A high degree of fluorination also enhances the reducibility of Pcs and could alter their singlet oxygen (1O2) photoproduction. The ethanol/toluene 20:80 vol % solvent mixture was found to dissolve perfluorinated FnPcZn complexes, n = 16, 52, and 64, and minimize the aggregation of the sterically unencumbered F16PcZn. The 1O2 production ability of FnPcZn complexes was examined using 9,10-dimethylanthracene (DMA) and 2,2,6,6-tetramethylpiperidine (TEMP) in combination with UV-vis and electron paramagnetic resonance (EPR) spectroscopy, respectively. While the photoreduction of F52PcZn and F64PcZn in the presence of redox-active TEMP lowered 1O2 production, DMA was a suitable 1O2 trap for ranking the complexes. The solution reactivity was complemented by solid-state studies via the construction of photoelectrochemical sensors based on TiO2-supported FnPcZn, FnPcZn|TiO2. Phenol photo-oxidation by 1O2, followed by its electrochemical reduction, defines a redox cycle, the 1O2 production having been found to depend on the value of n and structural features of the supported complexes. Consistent with solution studies, F52PcZn was found to be the most efficient 1O2 generator. The insights on reactivity testing and structural-activity relationships obtained may be useful for designing efficient and robust sensors and for other 1O2-related applications of FnPcZn.
Asunto(s)
Fenol , Oxígeno Singlete , Halogenación , Isoindoles , Compuestos Organometálicos , Oxígeno/química , Oxígeno Singlete/química , Compuestos de ZincRESUMEN
The catalytic activity of dye-decolorizing peroxidases (DyPs) toward bulky substrates, including anthraquinone dyes, phenolic lignin model compounds, or 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), is in strong contrast to their sterically restrictive active site. In two of the three known subfamilies (A- and C/D-type DyPs), catalytic protein radicals at surface-exposed sites, which are connected to the heme cofactor by electron transfer path(s), have been identified. So far in B-type DyPs, there has been no evidence for protein radical formation after activation by hydrogen peroxide. Interestingly, B-type Klebsiella pneumoniae dye-decolorizing peroxidase (KpDyP) displays a persistent organic radical in the resting state composed of two species that can be distinguished by W-band electron spin echo electron paramagnetic resonance (EPR) spectroscopy. Here, on the basis of a comprehensive mutational and EPR study of computationally predicted tyrosine and tryptophan variants of KpDyP, we demonstrate the formation of tyrosyl radicals (Y247 and Y92) and a radical-stabilizing Y-W dyad between Y247 and W18 in KpDyP, which are unique to enterobacterial B-type DyPs. Y247 is connected to Y92 by a hydrogen bonding network, is solvent accessible in simulations, and is involved in ABTS oxidation. This suggests the existence of long-range electron path(s) in B-type DyPs. The mechanistic and physiological relevance of the reaction mechanism of B-type DyPs is discussed.
Asunto(s)
Colorantes/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Peroxidasas/química , Peroxidasas/metabolismo , Tirosina , Color , Transporte de Electrón , Radicales Libres/química , Conformación ProteicaRESUMEN
Chlorite dismutases (Clds) are heme b-containing oxidoreductases that can decompose chlorite to chloride and molecular oxygen. They are divided in two clades that differ in oligomerization, subunit architecture, and the hydrogen-bonding network of the distal catalytic arginine, which is proposed to switch between two conformations during turnover. To understand the impact of the conformational dynamics of this basic amino acid on heme coordination, structure, and catalysis, Cld from Cyanothece sp. PCC7425 was used as a model enzyme. As typical for a clade 2 Cld, its distal arginine 127 is hydrogen-bonded to glutamine 74. The latter has been exchanged with either glutamate (Q74E) to arrest R127 in a salt bridge or valine (Q74V) that mirrors the setting in clade 1 Clds. We present the X-ray crystal structures of Q74V and Q74E and demonstrate the pH-induced changes in the environment and coordination of the heme iron by ultraviolet-visible, circular dichroism, and electron paramagnetic resonance spectroscopies as well as differential scanning calorimetry. The conformational dynamics of R127 is shown to have a significant role in heme coordination during the alkaline transition and in the thermal stability of the heme cavity, whereas its impact on the catalytic efficiency of chlorite degradation is relatively small. The findings are discussed with respect to (i) the flexible loop connecting the N-terminal and C-terminal ferredoxin-like domains, which differs in clade 1 and clade 2 Clds and carries Q74 in clade 2 proteins, and (ii) the proposed role(s) of the arginine in catalysis.
Asunto(s)
Arginina/metabolismo , Cloruros/metabolismo , Cyanothece/enzimología , Hemo/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Temperatura , Arginina/química , Catálisis , Estabilidad de Enzimas , Hemo/química , Enlace de Hidrógeno , Cinética , Modelos MolecularesRESUMEN
Copper(II) complexes formed with sulfonated salan ligands (HSS) have been synthesized, and their coordination chemistry has been characterized using pH-potentiometry and spectroscopic methods [UV-vis, electron paramagnetic resonance (EPR), and electron-electron double resonance (ELDOR)-detected NMR (EDNMR)] in aqueous solution. Several bridging moieties between the two salicylamine functions were introduced, e.g., ethyl (HSS), propyl (PrHSS), butyl (BuHSS), cyclohexyl (cis-CyHSS, trans-CyHSS), and diphenyl (dPhHSS). All of the investigated ligands feature excellent copper(II) binding ability via the formation of a (O-,N,N,O-) chelate system. The results indicated that the cyclohexyl moiety significantly enhances the stability of the copper(II) complexes. EPR studies revealed that the arrangement of the coordinated donor atoms is more symmetrical around the copper(II) center and similar for HSS, BuHSS, CyHSS, and dPhHSS, respectively, and a higher rhombicity of the g tensor was detected for PrHSS. The copper(II) complexes of the sulfosalan ligands were isolated in solid form also and showed moderate catalytic activity in the Henry (nitroaldol) reaction of aldehydes and nitromethane. The best yield for nitroaldol production was obtained for copper(II) complexes of PrHSS and BuHSS, although their metal binding ability is moderate compared to that of the cyclohexyl counterparts. However, these complexes possess larger spin density on the nitrogen nuclei than that for the other cases, which alters their catalytic activity.
RESUMEN
Dye-decolorizing peroxidases (DyPs) have gained interest for their ability to oxidize anthraquinone-derived dyes and lignin model compounds. Spectroscopic techniques, such as electron paramagnetic resonance and optical absorption spectroscopy, provide main tools to study how the enzymatic function is linked to the heme-pocket architecture, provided the experimental conditions are carefully chosen. Here, these techniques are used to investigate the effect of active site perturbations on the structure of ferric P-class DyP from Klebsiella pneumoniae (KpDyP) and three variants of the main distal residues (D143A, R232A and D143A/R232A). Arg-232 is found to be important for maintaining the heme distal architecture and essential to facilitate an alkaline transition. The latter is promoted in absence of Asp-143. Furthermore, the non-innocent effect of the buffer choice and addition of the cryoprotectant glycerol is shown. However, while unavoidable or indiscriminate experimental conditions are pitfalls, careful comparison of the effects of different exogenous molecules on the electronic structure and spin state of the heme iron contains information about the inherent flexibility of the heme pocket. The interplay between structural flexibility, key amino acids, pH, temperature, buffer and glycerol during in vitro spectroscopic studies is discussed with respect to the poor peroxidase activity of bacterial P-class DyPs.
Asunto(s)
Proteínas Bacterianas/metabolismo , Hemo/metabolismo , Klebsiella pneumoniae/enzimología , Peroxidasa/metabolismo , Descoloración del Agua , Aminoácidos/metabolismo , Dominio Catalítico , Espectroscopía de Resonancia por Spin del Electrón , Glicerol/metabolismo , Concentración de Iones de HidrógenoRESUMEN
Titanium dioxide (TiO2) is a unique material for biosensing applications due to its capability of hosting enzymes. For the first time, we show that TiO2 can accumulate reactive oxygen species (ROS) under daylight irradiation and can support the catalytic cycle of horseradish peroxidase (HRP) without the need of H2O2 to be present in the solution. Phenolic compounds, such as hydroquinone (HQ) and 4-aminophenol (4-AP), were detected amperometrically in flow-injection analysis (FIA) mode via the use of an electrode modified with TiO2 impregnated with HRP. In contrast to the conventional detection scheme, no H2O2 was added to the analyte solution. Basically, the inherited ability of TiO2 to generate reactive oxygen species is used as a strategy to avoid adding H2O2 in the solution during the detection of phenolic compounds. Electron paramagnetic resonance (EPR) spectroscopy indicates the presence of ROS on titania which, in interaction with HRP, initiate the electrocatalysis toward phenolic compounds. The amperometric response to 4-AP was linear in the concentration range between 0.05 and 2 µM. The sensitivity was 0.51 A M-1 cm-2, and the limit of detection (LOD) 26 nM. The proposed sensor design opens new opportunities for the detection of phenolic traces by HRP-based electrochemical biosensors, yet in a more straightforward and sensitive way following green chemistry principles of avoiding the use of reactive and harmful chemical, such as H2O2.
Asunto(s)
Electroquímica/métodos , Análisis de Inyección de Flujo/métodos , Peroxidasa de Rábano Silvestre/metabolismo , Luz , Fenoles/análisis , Especies Reactivas de Oxígeno/química , Titanio/química , Peroxidasa de Rábano Silvestre/química , Hidroquinonas/análisis , Hidroquinonas/química , Fenoles/químicaRESUMEN
Dye-decolorizing peroxidases (DyPs) represent the most recently classified hydrogen peroxide-dependent heme peroxidase family. Although widely distributed with more than 5000 annotated genes and hailed for their biotechnological potential, detailed biochemical characterization of their reaction mechanism remains limited. Here, we present the high-resolution crystal structures of WT B-class DyP from the pathogenic bacterium Klebsiella pneumoniae (KpDyP) (1.6 Å) and the variants D143A (1.3 Å), R232A (1.9 Å), and D143A/R232A (1.1 Å). We demonstrate the impact of elimination of the DyP-typical, distal residues Asp-143 and Arg-232 on (i) the spectral and redox properties, (ii) the kinetics of heterolytic cleavage of hydrogen peroxide, (iii) the formation of the low-spin cyanide complex, and (iv) the stability and reactivity of an oxoiron(IV)porphyrin π-cation radical (Compound I). Structural and functional studies reveal that the distal aspartate is responsible for deprotonation of H2O2 and for the poor oxidation capacity of Compound I. Elimination of the distal arginine promotes a collapse of the distal heme cavity, including blocking of one access channel and a conformational change of the catalytic aspartate. We also provide evidence of formation of an oxoiron(IV)-type Compound II in KpDyP with absorbance maxima at 418, 527, and 553 nm. In summary, a reaction mechanism of the peroxidase cycle of B-class DyPs is proposed. Our observations challenge the idea that peroxidase activity toward conventional aromatic substrates is related to the physiological roles of B-class DyPs.
Asunto(s)
Arginina/metabolismo , Ácido Aspártico/metabolismo , Colorantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidasas/metabolismo , Sustitución de Aminoácidos , Catálisis , Dominio Catalítico , Dicroismo Circular , Color , Cristalografía por Rayos X , Dimerización , Estabilidad de Enzimas , Hemo/química , Concentración de Iones de Hidrógeno , Hidrólisis , Klebsiella pneumoniae/metabolismo , Peroxidasas/química , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrofotometría UltravioletaRESUMEN
Despite the numerous studies on the adsorption of different proteins onto mesoporous titanium dioxide and indications on the important role of buffer solutions in bioactivity, a systematic study on the impact of the buffer on the protein incorporation into porous substrates is still lacking. We here studied the interaction between a commercial mesoporous TiO2 and three of the most used buffers for protein incorporation, i.e. HEPES, Tris and phosphate buffer. In addition, this paper analyzes the adsorption of horse heart myoglobin (hhMb) onto commercial mesoporous TiO2 as a model system to test the influence of buffers on the protein incorporation behavior in mesoporous TiO2. N2 sorption analysis, FT-IR and TGA/DTG measurements were used to evaluate the interaction between the buffers and the TiO2 surface, and the effect of such an interaction on hhMb adsorption. Cyclic voltammetry (CV) and electron paramagnetic resonance (EPR) were used to detect changes in the microenvironment surrounding the heme. The three buffers show a completely different interaction with the TiO2 surface, which drastically affects the adsorption of myoglobin as well as its structure and electrochemical activity. Therefore, special attention is required while choosing the buffer medium to avoid misguided evaluation of protein adsorption on mesoporous TiO2.
Asunto(s)
Tampones (Química) , Mioglobina/química , Titanio/química , Adsorción , Animales , Difusión , HEPES/química , Caballos , Fosfatos/química , Porosidad , Estabilidad Proteica , Trometamina/químicaRESUMEN
We report the structural and biochemical characterization of GLB-33, a putative neuropeptide receptor that is exclusively expressed in the nervous system of the nematode Caenorhabditis elegans. This unique chimeric protein is composed of a 7-transmembrane domain (7TM), GLB-33 7TM, typical of a G-protein-coupled receptor, and of a globin domain (GD), GLB-33 GD. Comprehensive sequence similarity searches in the genome of the parasitic nematode, Ascaris suum, revealed a chimeric protein that is similar to a Phe-Met-Arg-Phe-amide neuropeptide receptor. The three-dimensional structures of the separate domains of both species and of the full-length proteins were modeled. The 7TM domains of both proteins appeared very similar, but the globin domain of the A. suum receptor surprisingly seemed to lack several helices, suggesting a novel truncated globin fold. The globin domain of C. elegans GLB-33, however, was very similar to a genuine myoglobin-type molecule. Spectroscopic analysis of the recombinant GLB-33 GD showed that the heme is pentacoordinate when ferrous and in the hydroxide-ligated form when ferric, even at neutral pH. Flash-photolysis experiments showed overall fast biphasic CO rebinding kinetics. In its ferrous deoxy form, GLB-33 GD is capable of reversibly binding O2 with a very high affinity and of reducing nitrite to nitric oxide faster than other globins. Collectively, these properties suggest that the globin domain of GLB-33 may serve as a highly sensitive oxygen sensor and/or as a nitrite reductase. Both properties are potentially able to modulate the neuropeptide sensitivity of the neuronal transmembrane receptor.
Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Globinas/química , Mioglobina/química , Nitrito Reductasas/química , Oxígeno/metabolismo , Receptores de Neuropéptido/química , Secuencia de Aminoácidos , Animales , Ascaris suum/genética , Ascaris suum/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Expresión Génica , Globinas/genética , Globinas/metabolismo , Hemo/química , Hemo/metabolismo , Concentración de Iones de Hidrógeno , Hierro/química , Hierro/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mioglobina/genética , Mioglobina/metabolismo , Nitrito Reductasas/genética , Nitrito Reductasas/metabolismo , Oxidación-Reducción , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de AminoácidoRESUMEN
High-energy radiation produces radicals in crystalline sucrose. As such, sucrose is considered as a relevant model system for studying radiation damage to the sugar units of DNA. Many of these radicals are stable, detectable at room temperature with electron paramagnetic resonance (EPR) and their concentration is proportional to the absorbed dose in a considerable range. This makes sucrose also an interesting system for dosimetry. Dose assessment protocols rely on measurements of the total intensity of the EPR powder spectrum, so it is likely that they could be further improved if the composite nature of the spectrum was understood completely. Recently, it was shown that the three known stable radicals can only account for the central part of the spectrum and that features in the wings remain unidentified. In this work, we show, based on the analysis of the powder EPR patterns recorded at three microwave frequencies, that the contribution of one more species is sufficient to explain the entire spectrum. The determination of the spin Hamiltonian parameters is corroborated by a Q-band (34 GHz) single crystal electron-nuclear double resonance (ENDOR) analysis. The chemical structure of the fourth species is explored by analysis of the determined g and four (1)H hyperfine (HF) tensors, and verified using density functional theory (DFT) calculations. The ENDOR spectrum of the largest HF interaction of the fourth species was exploited to isolate the radical's absorption-like EPR spectrum from a multicomponent powder pattern.
Asunto(s)
Radicales Libres/química , Sacarosa/química , Rayos X , Espectroscopía de Resonancia por Spin del ElectrónRESUMEN
Doping the well-known metal-organic framework MIL-53(Al) with vanadium(IV) ions leads to significant changes in the breathing behaviour and might have repercussions on the catalytic behaviour as well. To understand the properties of such a doped framework, it is necessary to determine where dopant ions are actually incorporated. Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) are applied to reveal the nearest environment of the paramagnetic vanadium(IV) dopant ions. EPR spectra of as-synthesised vanadium-doped MIL-53 are recorded at S-, X-, Q- and W-band microwave frequencies. The EPR spectra suggest that at low dopant concentrations (1.0-2.6 mol %) the vanadium(IV) ions are well dispersed in the matrix. Varying the vanadium dopant concentration within this range or the dopant salt leads to the same dominant EPR component. In the ENDOR spectra, hyperfine (HF) interactions with (1) H, (27) Al and (51) V nuclei are observed. The HF parameters extracted from simulations strongly suggest that the vanadium(IV) ions substitute Al in the framework.
RESUMEN
Aqueous solutions of oxalato- and citrato-VO(2+) complexes are prepared, and their ligand exchange reaction is investigated as a function of the amount of citrate present in the aqueous solution via continuous-wave electron paramagnetic resonance (CW EPR) and hyperfine sublevel correlation (HYSCORE) spectroscopy. With a low amount of citrate, monomeric cis-oxalato-VO(2+) complexes occur with a distorted square-pyramidal geometry. As the amount of citrate increases, oxalate is gradually exchanged for citrate. This leads to (i) an intermediate situation of monomeric VO(2+) complexes with a mix of oxalate/citrate ligands and (ii) a final situation of both monomeric and dimeric complexes with exclusively citrato ligands. The monomeric citrato-VO(2+) complexes dominate (abundance > 80%) and are characterized by a 6-fold chelation of the vanadium(IV) ion by 4 RCO2(-) ligands at the equatorial positions and a H2O/R-OH ligand at the axial position. The different redox stabilities of these complexes, relative to that of dissolved O2 in the aqueous solution, is analyzed via (51)V NMR. It is shown that the oxidation rate is the highest for the oxalato-VO(2+) complexes. In addition, the stability of the VO(2+) complexes can be drastically improved by evacuation of the dissolved O2 from the solution and subsequent storage in a N2 ambient atmosphere. The vanadium oxide phase formation process, starting with the chemical solution deposition of the aqueous solutions and continuing with subsequent processing in an ambient 0.1% O2 atmosphere, differs for the two complexes. The oxalato-VO(2+) complexes turn into the oxygen-deficient crystalline VO2 B at 400 °C, which then turns into crystalline V6O13 at 500 °C. In contrast, the citrato-VO(2+) complexes form an amorphous film at 400 °C that crystallizes into VO2 M1 and V6O13 at 500 °C.
RESUMEN
The typical activation of a fourth generation Ziegler-Natta catalyst TiCl4/MgCl2/phthalate with triethyl aluminum generates Ti(3+)â centers that are investigated by multi-frequency continuous wave and pulse EPR methods. Two families of isolated, molecule-like Ti(3+)â species have been identified. A comparison of the experimentally derived gâ tensors and (35,37)Cl hyperfine and nuclear-quadrupole tensors with DFT-computed values suggests that the dominant EPR-active Ti(3+) â species is located on MgCl2(110) surfaces (or equivalent MgCl2 terminations with tetra-coordinated Mg). O2 reactivity tests show that a fraction of these Tiâ sites is chemically accessible, an important result in view of the search for the true catalyst active site in olefin polymerization.
RESUMEN
Neuroglobin, a globin characterized by a bis-histidine ligation of the heme iron, has been identified in mammalian and non-mammalian vertebrates, including fish, amphibians and reptiles. In human neuroglobin, the presence of an internal disulfide bond in the CD loop (CD7-D5) is found to modulate the ligand binding through a change in the heme pocket structure. Although the neuroglobin sequences mostly display conserved Cys at positions CD7, D5 and G18/19, a number of exceptions are known. In this study, neuroglobins from amphibian (Xenopus tropicalis) and fish (Chaenocephalus aceratus, Dissostichus mawsoni and Danio rerio) are investigated using electron paramagnetic resonance and optical absorption spectroscopy. All these neuroglobins differ from human neuroglobin in their Cys-positions. It is demonstrated that if disulfide bonds are formed in fish and amphibian neuroglobins, the reduction of these bonds does not result in alteration of the heme pocket in these globins. Furthermore, it is shown that mutagenesis of the Cys residues of X. tropicalis neuroglobin influences the protein structure. The amphibian neuroglobin is also found to be more resistant to H2O2-induced denaturation than the other neuroglobins under study, although all show an overall large stability in high concentrations of this oxidant. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Asunto(s)
Disulfuros/metabolismo , Globinas/metabolismo , Hemo/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Secuencia de Aminoácidos , Animales , Cisteína/química , Cisteína/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Peces/metabolismo , Globinas/química , Globinas/genética , Hemo/química , Humanos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuroglobina , Unión Proteica , Pliegue de Proteína , Homología de Secuencia de Aminoácido , Xenopus/metabolismoRESUMEN
The pore walls of phenylene-bridged periodic mesoporous organosilicas (B-PMOs) can be crystal-like or amorphous depending on the synthesis conditions. Here, spin-probe electron paramagnetic resonance (EPR) is used to monitor the adsorption of nitroxide radicals on three types of B-PMO with varying pore size and wall characteristics. Nitroxide radicals with varying polarity are chosen as probes to mimic guest molecules with different properties. The study shows that the B-PMO materials with amorphous walls allow an overall better adsorption of the spin probes than the one with crystalline walls, independent of the nature of the spin probe. The effect of hydration of the guest-host system on the mobility of the spin probe molecule depends more on the nature of the spin probe than on the B-PMO material. Comparison of the spin-probe adsorption on B-PMOs and ethylene-bridged PMO materials shows the sensitivity of the mobility of the guest molecule to the nature of the organic group.
RESUMEN
Multi-frequency continuous-wave and pulsed EPR techniques are employed to investigate Ti(III)-chloro complexes obtained by dissolving TiCl3 in anhydrous and hydrated methanol. Two distinctly different species, characterized by different g matrices are observed in the two cases. Hyperfine sublevel correlation (HYSCORE) spectroscopy is found to be a powerful method to identify the type of nuclei surrounding the Ti(3+) ion. For the first time, the hyperfine and nuclear quadrupole data of Ti(III)-bound (35/37)Cl nuclei are reported together with (1)H and (13)C hyperfine data of the coordinated methanol molecules. DFT modelling allows interpreting the measured spin Hamiltonian parameters in terms of microscopic models of the solvated species. The theoretical observable properties (g matrix, (35/37)Cl, (1)H and (13)C hyperfine tensors) are in quantitative agreement with the experiments for two families of complexes: [TiCln(CH3OH)6-n]((3-n)+) (with n ranging from 1 to 3) and [Ti(CH3OH)5(OH)](2+) or [Ti(CH3OH)5(OCH3)](2+). The first complex is observed in anhydrous methanol, while the second type of complex is observed when water is added to the solution, the presence of OH(-) and/or CH3O(-) species being promoted by water hydrolysis. The results obtained for the frozen solutions are critically compared to EPR spectra recorded for a MgCl2-supported Ti-based Ziegler-Natta model catalyst.
RESUMEN
2,5-Dithienylthiazolo[5,4-d]thiazole (DTTzTz) derivatives have high potential for solution-processed organic field-effect transistors and solar cells, both as electron acceptors and donors. Here, the electronic structure of positive and negative radicals (polarons) of two functionalized DTTzTz materials is studied using multi-frequency and multi-resonance electron paramagnetic resonance (EPR) in combination with density functional theory (DFT). It is shown that the negative and positive DTTzTz polarons can be distinguished on the basis of their characteristic EPR parameters. The chemically induced polarons are compared to light-generated states observed in a blend of one of the DTTzTz derivatives with a donor polymer. The study gives in-depth information about the spread of the electron or hole in the DTTzTz molecules.
RESUMEN
Protoglobin from Methanosarcina acetivorans (MaPgb) is a dimeric globin belonging to the same lineage of the globin superfamily as globin-coupled sensors. A putative role in the scavenging of reactive nitrogen and oxygen species has been suggested as a possible adaptation mechanism of the host organism to different gaseous environments in the course of evolution. A combination of optical absorption, electronic circular dichroism (ECD), resonance Raman (rRaman), and electron paramagnetic resonance (EPR) reveal the unusual in vitro reaction of ferric MaPgb with nitrite. In contrast to other globins, a large excess of nitrite did not induce the formation of a nitriglobin form in MaPgb. Surprisingly, the addition of nitrite in mildly acidic pH led to the formation of a stable nitric-oxide ligated ferric form of the protein (MaPgb-NO). Furthermore, the 300-700 nm ECD spectrum of ferric MaPgb is for the first time reported and discussed, showing strong differences in the Soret and Q ellipticity compared to ferric myoglobin, in line with the unusually strongly ruffled haem group of MaPgb and the related quantum-mechanical admixture of the S = 5/2 and S = 3/2 state of its ferric form. The Soret and Q ellipticity change strongly upon formation of MaPgb-NO, revealing a significant effect of the nitric-oxide ligation on the haem group and pocket. The related changes in the asymmetric pyrrole half-ring stretching vibration modes observed in the rRaman spectra give experimental support to earlier theoretical models, in which an important role of the in-plane breathing modes of the haem was predicted for the stabilization of the binding of diatomic gases to MaPgb.