Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(7): 3789-3796, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32015134

RESUMEN

The facultative intracellular pathogen Listeria monocytogenes uses an actin-based motility process to spread within human tissues. Filamentous actin from the human cell forms a tail behind bacteria, propelling microbes through the cytoplasm. Motile bacteria remodel the host plasma membrane into protrusions that are internalized by neighboring cells. A critical unresolved question is whether generation of protrusions by Listeria involves stimulation of host processes apart from actin polymerization. Here we demonstrate that efficient protrusion formation in polarized epithelial cells involves bacterial subversion of host exocytosis. Confocal microscopy imaging indicated that exocytosis is up-regulated in protrusions of Listeria in a manner that depends on the host exocyst complex. Depletion of components of the exocyst complex by RNA interference inhibited the formation of Listeria protrusions and subsequent cell-to-cell spread of bacteria. Additional genetic studies indicated important roles for the exocyst regulators Rab8 and Rab11 in bacterial protrusion formation and spread. The secreted Listeria virulence factor InlC associated with the exocyst component Exo70 and mediated the recruitment of Exo70 to bacterial protrusions. Depletion of exocyst proteins reduced the length of Listeria protrusions, suggesting that the exocyst complex promotes protrusion elongation. Collectively, these results demonstrate that Listeria exploits host exocytosis to stimulate intercellular spread of bacteria.


Asunto(s)
Exocitosis , Listeria monocytogenes/fisiología , Listeriosis/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células CACO-2 , Quinasas del Centro Germinal/genética , Quinasas del Centro Germinal/metabolismo , Interacciones Huésped-Patógeno , Humanos , Listeria monocytogenes/genética , Listeriosis/genética , Listeriosis/metabolismo , Listeriosis/fisiopatología , Unión Proteica , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
2.
J Cell Sci ; 132(9)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040222

RESUMEN

Septins are widely recognized as a component of the cytoskeleton that is essential for cell division, and new work has shown that septins can recognise cell shape by assembling into filaments on membrane regions that display micrometer-scale curvature (e.g. at the cytokinetic furrow). Moreover, infection biology studies have illuminated important roles for septins in mediating the outcome of host-microbe interactions. In this Review, we discuss a selection of mechanistic insights recently gained from studying three infection paradigms: the rice blast fungus Magnaporthe oryzae, the poxvirus family member vaccinia virus and the Gram-negative bacterium Shigella flexneri These studies have respectively discovered that higher-order septin assemblies enable fungal invasion into plant cells, entrap viral particles at the plasma membrane and recognize dividing bacterial cells for delivery to lysosomes. Collectively, these insights illustrate how studying septin biology during microbial infection can provide fundamental advances in both cell and infection biology, and suggest new concepts underlying infection control.


Asunto(s)
Interacciones Microbiota-Huesped/fisiología , Oryza/microbiología , Oryza/virología , Enfermedades de las Plantas , Septinas , Membrana Celular/metabolismo , Membrana Celular/microbiología , Citoesqueleto/metabolismo , Citoesqueleto/microbiología , Magnaporthe/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Septinas/biosíntesis , Septinas/química , Septinas/genética , Septinas/metabolismo , Shigella flexneri/patogenicidad , Virus Vaccinia/patogenicidad
3.
Infect Immun ; 87(1)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30348826

RESUMEN

Listeria monocytogenes is a foodborne bacterium that causes gastroenteritis, meningitis, or abortion. Listeria induces its internalization (entry) into some human cells through interaction of the bacterial surface protein InlB with its host receptor, the Met tyrosine kinase. InlB and Met promote entry, in part, through stimulation of localized exocytosis. How exocytosis is upregulated during entry is not understood. Here, we show that the human signaling proteins mTOR, protein kinase C-α (PKC-α), and RalA promote exocytosis during entry by controlling the scaffolding protein Filamin A (FlnA). InlB-mediated uptake was accompanied by PKC-α-dependent phosphorylation of serine 2152 in FlnA. Depletion of FlnA by RNA interference (RNAi) or expression of a mutated FlnA protein defective in phosphorylation impaired InlB-dependent internalization. These findings indicate that phosphorylation of FlnA by PKC-α contributes to entry. mTOR and RalA were found to mediate the recruitment of FlnA to sites of InlB-mediated entry. Depletion of PKC-α, mTOR, or FlnA each reduced exocytosis during InlB-mediated uptake. Because the exocyst complex is known to mediate polarized exocytosis, we examined if PKC-α, mTOR, RalA, or FlnA affects this complex. Depletion of PKC-α, mTOR, RalA, or FlnA impaired recruitment of the exocyst component Exo70 to sites of InlB-mediated entry. Experiments involving knockdown of Exo70 or other exocyst proteins demonstrated an important role for the exocyst complex in uptake of Listeria Collectively, our results indicate that PKC-α, mTOR, RalA, and FlnA comprise a signaling pathway that mobilizes the exocyst complex to promote infection by Listeria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endocitosis , Exocitosis , Filaminas/metabolismo , Interacciones Huésped-Patógeno , Listeria monocytogenes/fisiología , Proteínas de la Membrana/metabolismo , Proteína Quinasa C-alfa/metabolismo , Células HeLa , Humanos , Listeria monocytogenes/metabolismo , Mapas de Interacción de Proteínas
4.
Cell Microbiol ; 20(8): e12861, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29797532

RESUMEN

Many microbial pathogens co-opt or perturb host membrane trafficking pathways. This review covers recent examples in which microbes interact with host exocytosis, the fusion of intracellular vesicles with the plasma membrane. The bacterial pathogens Listeria monocytogenes and Staphylococcus aureus subvert recycling endosomal pathways of exocytosis in order to induce their entry into human cells. By contrast, entry of the protozoan pathogen Trypanosoma cruzi or the virus adenovirus into host cells involves exploitation of lysosomal exocytosis. Toxins produced by Bacillus anthracis or Vibrio cholerae interfere with exocytosis pathways mediated by the GTPase Rab11 and the exocyst complex. By doing so, anthrax or cholera toxins impair recycling of cadherins to cell-cell junctions and disrupt the barrier properties of endothelial cells or intestinal epithelial cells, respectively. Uropathogenic Escherichia coli (UPEC) is expelled from bladder epithelial cells through two different exocytic routes that involve sensing of bacteria in vacuoles by host Toll-like receptor 4 (TLR4) or monitoring of the pH of lysosomes harbouring UPEC. The TLR4 pathway is mediated by multiple Rab GTPases and the exocyst, whereas the other pathway involves exocytosis of lysosomes. Expulsion of UPEC through these pathways is thought to benefit the host.


Asunto(s)
Bacterias/patogenicidad , Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Exocitosis , Interacciones Huésped-Patógeno , Trypanosoma/patogenicidad , Virus/patogenicidad , Animales , Vesículas Citoplasmáticas/microbiología , Humanos
5.
Cell Microbiol ; 19(11)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28745416

RESUMEN

The bacterial surface protein InlB mediates internalisation of Listeria monocytogenes into human cells through interaction with the host receptor tyrosine kinase, Met. InlB-mediated entry requires localised polymerisation of the host actin cytoskeleton. Apart from actin polymerisation, roles for other host processes in Listeria entry are unknown. Here, we demonstrate that exocytosis in the human cell promotes InlB-dependent internalisation. Using a probe consisting of VAMP3 with an exofacial green fluorescent protein tag, focal exocytosis was detected during InlB-mediated entry. Exocytosis was dependent on Met tyrosine kinase activity and the GTPase RalA. Depletion of SNARE proteins by small interfering RNA demonstrated an important role for exocytosis in Listeria internalisation. Depletion of SNARE proteins failed to affect actin filaments during internalisation, suggesting that actin polymerisation and exocytosis are separable host responses. SNARE proteins were required for delivery of the human GTPase Dynamin 2, which promotes InlB-mediated entry. Our results identify exocytosis as a novel host process exploited by Listeria for infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Exocitosis/fisiología , Listeria monocytogenes/fisiología , Listeria monocytogenes/patogenicidad , Listeriosis/patología , Proteínas de la Membrana/metabolismo , Citoesqueleto de Actina/metabolismo , Línea Celular Tumoral , Dinamina II , Dinaminas/metabolismo , Células HeLa , Humanos , Listeriosis/microbiología , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteína 3 de Membrana Asociada a Vesículas/genética , Proteínas de Unión al GTP ral/metabolismo
6.
Cytoskeleton (Hoboken) ; 80(7-8): 254-265, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35460543

RESUMEN

Apoptosis is a form of regulated cell death essential for tissue homeostasis and embryonic development. Apoptosis also plays a key role during bacterial infection, yet some intracellular bacterial pathogens (such as Shigella flexneri, whose lipopolysaccharide can block apoptosis) can manipulate cell death programs as an important survival strategy. Septins are a component of the cytoskeleton essential for mitochondrial dynamics and host defense, however, the role of septins in regulated cell death is mostly unknown. Here, we discover that septins promote mitochondrial (i.e., intrinsic) apoptosis in response to treatment with staurosporine (a pan-kinase inhibitor) or etoposide (a DNA topoisomerase inhibitor). Consistent with a role for septins in mitochondrial dynamics, septins promote the release of mitochondrial protein cytochrome c in apoptotic cells and are required for the proteolytic activation of caspase-3, caspase-7, and caspase-9 (core components of the apoptotic machinery). Apoptosis of HeLa cells induced in response to infection by S. flexneri ΔgalU (a lipopolysaccharide mutant unable to block apoptosis) is also septin-dependent. In vivo, zebrafish larvae are significantly more susceptible to infection with S. flexneri ΔgalU (as compared to infection with wildtype S. flexneri), yet septin deficient larvae are equally susceptible to infection with S. flexneri ΔgalU and wildtype S. flexneri. These data provide a new molecular framework to understand the complexity of mitochondrial apoptosis and its ability to combat bacterial infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA