Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 30(29): e202400311, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38499471

RESUMEN

Concerns about increasing greenhouse gas emissions and their effect on our environment highlight the urgent need for new sustainable technologies. Visible light photocatalysis allows the clean and selective generation of reactive intermediates under mild conditions. The more widespread adoption of the current generation of photocatalysts, particularly those using precious metals, is hampered by drawbacks such as their cost, toxicity, difficult separation, and limited recyclability. This is driving the search for alternatives, such as porous organic polymers (POPs). This new class of materials is made entirely from organic building blocks, can possess high surface area and stability, and has a controllable composition and functionality. This review focuses on the application of POPs as photocatalysts in organic synthesis. For each reaction type, a representative material is discussed, with special attention to the mechanism of the reaction. Additionally, an overview is given, comparing POPs with other classes of photocatalysts, and critical conclusions and future perspectives are provided on this important field.

2.
Small ; 19(46): e2303189, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37471172

RESUMEN

Two donor-acceptor type tetrathiafulvalene (TTF)-based covalent organic frameworks (COFs) are investigated as electrodes for symmetric supercapacitors in different electrolytes, to understand the charge storage and dynamics in 2D COFs. Till-date, most COFs are investigated as Faradic redox pseudocapacitors in aqueous electrolytes. For the first time, it is tried to enhance the electrochemical performance and stability of pristine COF-based supercapacitors by operating them in the non-Faradaic electrochemically double layer capacitance region. It is found that the charge storage mechanism of ionic liquid (IL) electrolyte based supercapacitors is dependent on the micropore size and surface charge density of the donor-acceptor COFs. The surface charge density alters due to the different electron acceptor building blocks, which in turn influences the dense packing of the IL near its pore. The micropores induce pore confinement of IL in the COFs by partial breaking of coulomb ordering and rearranging it. The combination of these two factors enhance the charge storage in the highly microporous COFs. The density functional theory calculations support the same. At 1 A g-1 , TTF-porphyrin COF provides capacitance of 42, 70, and 130 F g-1 in aqueous, organic, and IL electrolyte respectively. TTF-diamine COF shows a similar trend with 100 F g-1 capacitance in IL.

3.
Inorg Chem ; 62(40): 16304-16322, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37753934

RESUMEN

The nucleation process of zeolitic imidazolate frameworks (ZIFs) is to date not completely understood. Recently, it has been found that, during the formation of Co-ZIF-67, after mixing imidazole-type ligands with octahedral precursors containing oxygen-coordinated ligands, a metal-organic pool with a diversity of transition metal complexes (TMCs) is formed showing fingerprints of octahedral and tetrahedral Co2+ complexes with both types of ligands [Filez, M. Cell Rep. Phys. Sci. 2021, 2, 100680]. In order to further unravel this process, we aim to characterize the d-d transitions of the TMCs and focus on their number, intensity, and position, which change during the process and can thus serve as a fingerprint for the formed species. It was previously shown that the number of ligands and symmetry has a detrimental influence on the ground state properties of Co2+ TMCs. Herein, we investigate how far excited state properties of TMCs relevant during nanoporous formation processes can be predicted by time-dependent density functional theory (TDDFT) and ligand field density functional theory (LFDFT). As TMCs are known to be challenging systems with possibly degenerate ground states and double excitations, we first investigate the performance of both techniques on first-row octahedral aqua-complexes. With this knowledge, we then focus on tetrahedral Co2+ complexes with aqua and imidazole-type ligands in order to investigate in how far we can propose a spectroscopic fingerprint that allows us to follow the Co2+ complexes during the formation of Co-ZIF-67. The results of TDDFT and LFDFT are qualitatively in agreement and provide complementary information. We found that various features can be used to distinguish between the species. However, as LFDFT is not suited for TMCs possessing the extended imidazole-type ligands and double and spin-flip states are not included in TDDFT, both techniques need to be complemented with more advanced methods to obtain complete insight into the d-d excitations of TMCs with imidazole ligands. Therefore, we particularly explored ab initio ligand field theory, which is capable of describing double excitations and is, in contrast to LFDFT, suitable for TMCs with extended ligands.

4.
Philos Trans A Math Phys Eng Sci ; 381(2250): 20220239, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37211031

RESUMEN

The question is addressed in how far current modelling strategies are capable of modelling dynamic phenomena in realistic nanostructured materials at operating conditions. Nanostructured materials used in applications are far from perfect; they possess a broad range of heterogeneities in space and time extending over several orders of magnitude. Spatial heterogeneities from the subnanometre to the micrometre scale in crystal particles with a finite size and specific morphology, impact the material's dynamics. Furthermore, the material's functional behaviour is largely determined by the operating conditions. Currently, there exists a huge length-time scale gap between attainable theoretical length-time scales and experimentally relevant scales. Within this perspective, three key challenges are highlighted within the molecular modelling chain to bridge this length-time scale gap. Methods are needed that enable (i) building structural models for realistic crystal particles having mesoscale dimensions with isolated defects, correlated nanoregions, mesoporosity, internal and external surfaces; (ii) the evaluation of interatomic forces with quantum mechanical accuracy albeit at much lower computational cost than the currently used density functional theory methods and (iii) derivation of the kinetics of phenomena taking place in a multi-length-time scale window to obtain an overall view of the dynamics of the process. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.

5.
Phys Chem Chem Phys ; 25(42): 28581-28594, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703074

RESUMEN

The HBr-assisted electrophilic aromatic bromination of benzene, anisole and nitrobenzene was investigated using static DFT calculations in gas phase and implicit apolar (CCl4) and polar (acetonitrile) solvent models at the ωB97X-D/cc-pVTZ level of theory. The reaction profiles corresponding to either a direct substitution reaction or an addition-elimination process were constructed and insight into the preferred regioselectivity was provided using a combination of conceptual DFT reactivity indices, aromaticity indices, Wiberg bond indices and the non-covalent interaction index. Our results show that under the considered reaction conditions the bromination reaction preferentially occurs through an addition-elimination mechanism and without formation of a stable charged Wheland intermediate. The ortho/para directing effect of the electron-donating methoxy-group in anisole was ascribed to a synergy between strong electron delocalisation and attractive interactions. In contrast, the preferred meta-addition on nitrobenzene could not be traced back to any of these effects, nor to the intrinsic reactivity property of the reactant. In this case, an electrostatic clash between the ipso-carbon of the ring and the nitrogen atom resulting from the later nature of the rate-determining step, with respect to anisole, appeared to play a crucial role.

6.
Angew Chem Int Ed Engl ; 62(47): e202313836, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37806967

RESUMEN

Electrochemical two-electron water oxidation (2e WOR) is gaining surging research traction for sustainable hydrogen peroxide production. However, the strong oxidizing environment and thermodynamically competitive side-reaction (4e WOR) posit as thresholds for the 2e WOR. We herein report a custom-crafted covalent triazine network possessing strong oxidizing properties as a proof-of-concept metal-free functional organic network electrocatalyst for catalyzing 2e WOR. As the first-of-its-kind, the material shows a maximum of 89.9 % Faradaic Efficiency and 1428 µmol/h/cm2 H2 O2 production rate at 3.0 V bias potential (vs reversible hydrogen electrode, RHE), which are either better or comparable to the state-of-the-art electrocatalysts. We have experimentally confirmed a stepwise 2e WOR mechanism which was further computationally endorsed by density functional theory studies.

7.
Angew Chem Int Ed Engl ; 62(19): e202216719, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36897555

RESUMEN

Four highly porous covalent organic frameworks (COFs) containing pyrene units were prepared and explored for photocatalytic H2 O2 production. The experimental studies are complemented by density functional theory calculations, proving that the pyrene unit is more active for H2 O2 production than the bipyridine and (diarylamino)benzene units reported previously. H2 O2 decomposition experiments verified that the distribution of pyrene units over a large surface area of COFs plays an important role in catalytic performance. The Py-Py-COF though contains more pyrene units than other COFs which induces a high H2 O2 decomposition due to a dense concentration of pyrene in close proximity over a limited surface area. Therefore, a two-phase reaction system (water-benzyl alcohol) was employed to inhibit H2 O2 decomposition. This is the first report on applying pyrene-based COFs in a two-phase system for photocatalytic H2 O2 generation.

8.
Nat Mater ; 20(7): 1015-1023, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33888902

RESUMEN

Optimal mechanical impact absorbers are reusable and exhibit high specific energy absorption. The forced intrusion of liquid water in hydrophobic nanoporous materials, such as zeolitic imidazolate frameworks (ZIFs), presents an attractive pathway to engineer such systems. However, to harness their full potential, it is crucial to understand the underlying water intrusion and extrusion mechanisms under realistic, high-rate deformation conditions. Here, we report a critical increase of the energy absorption capacity of confined water-ZIF systems at elevated strain rates. Starting from ZIF-8 as proof-of-concept, we demonstrate that this attractive rate dependence is generally applicable to cage-type ZIFs but disappears for channel-containing zeolites. Molecular simulations reveal that this phenomenon originates from the intrinsic nanosecond timescale needed for critical-sized water clusters to nucleate inside the nanocages, expediting water transport through the framework. Harnessing this fundamental understanding, design rules are formulated to construct effective, tailorable and reusable impact energy absorbers for challenging new applications.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Nanotecnología , Zeolitas/química , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Porosidad
9.
Chemistry ; 28(68): e202202621, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36005885

RESUMEN

An important aspect within zeolite synthesis is to make fully tunable framework materials with controlled aluminium distribution. A major challenge in characterising these zeolites at operating conditions is the presence of water. In this work, we investigate the effect of hydration on the 27 Al NMR parameters of the ultracrystalline K,Na-compensated aluminosilicate JBW zeolite using experimental and computational techniques. The JBW framework, with Si/Al ratio of 1, is an ideal benchmark system as a stepping stone towards more complicated zeolites. The presence and mobility of water and extraframework species directly affect NMR fingerprints. Excellent agreement between theoretical and experimental spectra is obtained provided dynamic methods are employed with hydrated structural models. This work shows how NMR is instrumental in characterising aluminium distributions in zeolites at operating conditions.

10.
Inorg Chem ; 61(51): 20743-20756, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36520920

RESUMEN

The nucleation process of zeolitic imidazolate frameworks (ZIFs) is, to date, not yet completely understood, making the search for tailored materials very difficult. Recently, it has been shown that, during the formation process, the symmetry of the precursors is reduced by ligand elimination and substitution reactions. The octahedral precursors with simple ligands, such as water, methanol, and/or NO3-, are transformed to five- and finally four-coordinated complexes with imidazole ligands. This reduction of symmetry, caused both by the changing coordination environment and distortions from the perfect symmetry leading to another point group, will have a large influence on the electronic structure and more specifically on the d-orbital splitting. This, in turn, will affect the d-d electronic excitations, which can be followed using UV-vis spectroscopy and which can help to unravel the formation process. In this work, we systematically investigate how the lowering of the number of ligands affects the symmetry and thus the geometry and electronic structure of Co2+ complexes with six, five, and four aqua ligands. Therefore, we first resort to qualitative techniques, such as crystal field theory (CFT) and ligand field theory (LFT), which reveal that the orbital splitting is characteristic for the number of ligands. However, as these techniques are not capable of providing quantitative results without the use of experimental data as input, we perform various computational calculations. Both average of configuration (AOC) and unrestricted density functional theory (UDFT) are thoroughly investigated, and we will determine which technique is the best suited to properly describe the ground state of these systems. To investigate the dependency on the d-orbital occupation, we also investigated V2+, Mn2+, and Ni2+ hexa-aqua-complexes and compared them to the Co systems.

11.
Proc Natl Acad Sci U S A ; 121(2): e2319800121, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38150478
12.
J Am Chem Soc ; 143(13): 4962-4968, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33593065

RESUMEN

Molecular separation of carbon dioxide (CO2) and methane (CH4) is of growing interest for biogas upgrading, carbon capture and utilization, methane synthesis and for purification of natural gas. Here, we report a new zeolitic-imidazolate framework (ZIF), coined COK-17, with exceptionally high affinity for the adsorption of CO2 by London dispersion forces, mediated by chlorine substituents of the imidazolate linkers. COK-17 is a new type of flexible zeolitic-imidazolate framework Zn(4,5-dichloroimidazolate)2 with the SOD framework topology. Below 200 K it displays a metastable closed-pore phase next to its stable open-pore phase. At temperatures above 200 K, COK-17 always adopts its open-pore structure, providing unique adsorption sites for selective CO2 adsorption and packing through van der Waals interactions with the chlorine groups, lining the walls of the micropores. Localization of the adsorbed CO2 molecules by Rietveld refinement of X-ray diffraction data and periodic density functional theory calculations revealed the presence and nature of different adsorption sites. In agreement with experimental data, grand canonical Monte Carlo simulations of adsorption isotherms of CO2 and CH4 in COK-17 confirmed the role of the chlorine functions of the linkers and demonstrated the superiority of COK-17 compared to other adsorbents such as ZIF-8 and ZIF-71.

13.
Chemistry ; 27(25): 7214-7230, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33539627

RESUMEN

The market share of noncontact temperature sensors is expending due to fast technological and medical evolutions. In the wide variety of noncontact sensors, lanthanide-based temperature sensors stand out. They benefit from high photostability, relatively long decay times and high quantum yields. To circumvent their low molar light absorption, the incorporation of a light-harvesting antenna is required. This Review provides an overview of the nitrogen-rich antennae in lanthanide-based temperature sensors, emitting in the visible light spectrum, and discusses their temperature sensor ability. The N-rich ligands are incorporated in many different platforms. The investigation of different antennae is required to develop temperature sensors with diverse optical properties and to create a diverse offer for the multiple application fields. Molecular probes, consisting of small molecules, are first discussed. Furthermore, the thermometer properties of ratiometric temperature sensors, based on di- and polynuclear complexes, metal-organic frameworks, periodic mesoporous organosilicas and porous organic polymers, are summarized. The antenna mainly determines the application potential of the ratiometric thermometer. It can be observed that molecular probes are operational in the broad physiological range, metal-organic frameworks are generally very useful in the cryogenic region, periodic mesoporous organosilica show temperature dependency in the physiological range, and porous organic polymers are operative in the cryogenic-to-medium temperature range.

14.
Chemistry ; 27(19): 5956-5971, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33453093

RESUMEN

Anthocyanins and pyranoanthocyanins are flavonoids that are present in various food products (e.g., fruit, vegetables, wine, etc.). The large chemical diversity amongst these molecules leads to compound-specific properties such as color and stability towards external conditions. These properties are also attractive for food and non-food applications. The photophysical experimental characterization is not easy as this generally demands advanced analytical techniques along with optimized separation procedures. Molecular modeling can provide insights into the fundamental understanding of the photophysical properties of these compounds in a uniform way for a broad set of compounds. However, the current literature is quite fragmented on this topic. Herein, a large set of 140 naturally derived anthocyanins was evaluated in a systematic way with three functionals (B3LYP, PBE0, and CAM-B3LYP). The accuracy of these functionals was determined with experimental literature λmax,vis values. In addition to λmax,vis values, time-dependent (TD)-DFT calculations also provided oscillator strengths, molar absorption coefficients, and orbital energies, which define whether specific natural anthocyanin-based compounds can be deployed in food and non-food applications such as food additives/colorants, textile dyeing, analytical standards, and dye-sensitized solar cells (DSSCs).

15.
Faraday Discuss ; 225: 301-323, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33118592

RESUMEN

To exploit the full potential of metal-organic frameworks as solid adsorbents in water-adsorption applications, many challenges remain to be solved. A more fundamental insight into the properties of the host material and the influence that water exerts on them can be obtained by performing molecular simulations. In this work, the prototypical flexible MIL-53(Al) framework is modelled using advanced molecular dynamics simulations. For different water loadings, the presence of water is shown to affect the relative stability of MIL-53(Al), triggering a phase transition from the narrow-pore to the large-pore phase at the highest considered loading. Furthermore, the effect of confinement on the structural organisation of the water molecules is also examined for different pore volumes of MIL-53(Al). For the framework itself, we focus on the thermal conductivity, as this property plays a decisive role in the efficiency of adsorption-based technologies, due to the energy-intensive adsorption and desorption cycles. To this end, the heat transfer characteristics of both phases of MIL-53(Al) are studied, demonstrating a strong directional dependence for the thermal conductivity.

16.
Phys Chem Chem Phys ; 23(12): 7088-7100, 2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33876075

RESUMEN

Studying the structural environment of the VIV ions doped in the metal-organic framework (MOF) DUT-5(Al) ((AlIIIOH)BPDC) with electron paramagnetic resonance (EPR) reveals four different vanadium-related spectral components. The spin-Hamiltonian parameters are derived by analysis of X-, Q- and W-band powder EPR spectra. Complementary Q-band Electron Nuclear DOuble Resonance (ENDOR) experiments, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX), X-Ray Diffraction (XRD) and Fourier Transform InfraRed (FTIR) measurements are performed to investigate the origin of these spectral components. Two spectral components with well resolved 51V hyperfine structure are visible, one corresponding to VIV[double bond, length as m-dash]O substitution in a large (or open) pore and one to a narrow (or closed) pore variant of this MOF. Furthermore, a broad structureless Lorentzian line assigned to interacting vanadyl centers in each other's close neighborhood grows with increasing V-concentration. The last spectral component is best visible at low V-concentrations. We tentatively attribute it to (VIV[double bond, length as m-dash]O)2+ linked with DMF or dimethylamine in the pores of the MOF. Simulations using these four spectral components convincingly reproduce the experimental spectra and allow to estimate the contribution of each vanadyl species as a function of V-concentration.

17.
Angew Chem Int Ed Engl ; 60(16): 8913-8922, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33493379

RESUMEN

Structurally characterizing new materials is tremendously challenging, especially when single crystal structures are hardly available which is often the case for covalent organic frameworks. Yet, knowledge of the atomic structure is key to establish structure-function relations and enable functional material design. Herein, a new protocol is proposed to unambiguously predict the structure of poorly crystalline materials through a likelihood ordering based on the X-ray diffraction (XRD) pattern. Key of the procedure is the broad set of structures generated from a limited number of building blocks and topologies, which is submitted to operando structural characterization. The dynamic averaging in the latter accounts for the operando conditions and inherent temporal character of experimental measurements, yielding unparalleled agreement with experimental powder XRD patterns. The proposed concept can hence unquestionably identify the structure of experimentally synthesized materials, a crucial step to design next generation functional materials.

18.
Angew Chem Int Ed Engl ; 60(18): 10016-10022, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33496374

RESUMEN

The diffusion of saturated and unsaturated hydrocarbons is of fundamental importance for many zeolite-catalyzed processes. Transport of small alkenes in the confined zeolite pores can become hindered, resulting in a significant impact on the ultimate product selectivity and separation. Herein, intracrystalline light olefin/paraffin diffusion through the 8-ring windows of zeolite SAPO-34 is characterized by a complementary set of first-principle molecular dynamics simulations, PFG-NMR experiments, and pulse-response temporal analysis of products measurements, yielding information at different length and time scales. Our results clearly show a promotional effect of the presence of Brønsted acid sites on the diffusion rate of ethene and propene, whereas transport of alkanes is found to be insensitive to the presence of acid sites. The enhanced diffusivity of unsaturated hydrocarbons is ascribed to the formation of favorable π-H interactions with acid protons, as confirmed by IR spectroscopy measurements. The acid site distribution is proven to be an important design parameter for optimizing product distributions and separations.

19.
J Am Chem Soc ; 142(47): 20107-20116, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33185433

RESUMEN

Photocatalytic reduction of molecular oxygen is a promising route toward sustainable production of hydrogen peroxide (H2O2). This challenging process requires photoactive semiconductors enabling solar energy driven generation and separation of electrons and holes with high charge transfer kinetics. Covalent organic frameworks (COFs) are an emerging class of photoactive semiconductors, tunable at a molecular level for high charge carrier generation and transfer. Herein, we report two newly designed two-dimensional COFs based on a (diarylamino)benzene linker that form a Kagome (kgm) lattice and show strong visible light absorption. Their high crystallinity and large surface areas (up to 1165 m2·g-1) allow efficient charge transfer and diffusion. The diarylamine (donor) unit promotes strong reduction properties, enabling these COFs to efficiently reduce oxygen to form H2O2. Overall, the use of a metal-free, recyclable photocatalytic system allows efficient photocatalytic solar transformations.

20.
J Am Chem Soc ; 142(6): 3174-3183, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31971786

RESUMEN

The stability of metal-organic frameworks (MOFs) typically decreases with an increasing number of defects, limiting the number of defects that can be created and limiting catalytic and other applications. Herein, we use a hemilabile (Hl) linker to create up to a maximum of six defects per cluster in UiO-66. We synthesized hemilabile UiO-66 (Hl-UiO-66) using benzene dicarboxylate (BDC) as linker and 4-sulfonatobenzoate (PSBA) as the hemilabile linker. The PSBA acts not only as a modulator to create defects but also as a coligand that enhances the stability of the resulting defective framework. Furthermore, upon a postsynthetic treatment in H2SO4, the average number of defects increases to the optimum of six missing BDC linkers per cluster (three per formula unit), leaving the Zr-nodes on average sixfold coordinated. Remarkably, the thermal stability of the materials further increases upon this treatment. Periodic density functional theory calculations confirm that the hemilabile ligands strengthen this highly defective structure by several stabilizing interactions. Finally, the catalytic activity of the obtained materials is evaluated in the acid-catalyzed isomerization of α-pinene oxide. This reaction is particularly sensitive to the Brønsted or Lewis acid sites in the catalyst. In comparison to the pristine UiO-66, which mainly possesses Brønsted acid sites, the Hl-UiO-66 and the postsynthetically treated Hl-UiO-66 structures exhibited a higher Lewis acidity and an enhanced activity and selectivity. This is further explored by CD3CN spectroscopic sorption experiments. We have shown that by tuning the number of defects in UiO-66 using PSBA as the hemilabile linker, one can achieve highly defective and stable MOFs and easily control the Brønsted to Lewis acid ratio in the materials and thus their catalytic activity and selectivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA