Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 52(6): 1039-1056.e9, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32392463

RESUMEN

The phenotypic and functional dichotomy between IRF8+ type 1 and IRF4+ type 2 conventional dendritic cells (cDC1s and cDC2s, respectively) is well accepted; it is unknown how robust this dichotomy is under inflammatory conditions, when additionally monocyte-derived cells (MCs) become competent antigen-presenting cells (APCs). Using single-cell technologies in models of respiratory viral infection, we found that lung cDC2s acquired expression of the Fc receptor CD64 shared with MCs and of IRF8 shared with cDC1s. These inflammatory cDC2s (inf-cDC2s) were superior in inducing CD4+ T helper (Th) cell polarization while simultaneously presenting antigen to CD8+ T cells. When carefully separated from inf-cDC2s, MCs lacked APC function. Inf-cDC2s matured in response to cell-intrinsic Toll-like receptor and type 1 interferon receptor signaling, upregulated an IRF8-dependent maturation module, and acquired antigens via convalescent serum and Fc receptors. Because hybrid inf-cDC2s are easily confused with monocyte-derived cells, their existence could explain why APC functions have been attributed to MCs.


Asunto(s)
Plasticidad de la Célula/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Inmunidad , Macrófagos/inmunología , Macrófagos/metabolismo , Infecciones por Respirovirus/etiología , Presentación de Antígeno , Biomarcadores , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Inmunofenotipificación , Interferón Tipo I/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Especificidad de Órganos/inmunología , Receptores Fc/metabolismo , Infecciones por Respirovirus/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Factores de Transcripción , Virosis/genética , Virosis/inmunología , Virosis/metabolismo , Virosis/virología
2.
Immunity ; 52(6): 1088-1104.e6, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32304633

RESUMEN

During postnatal life, thymopoiesis depends on the continuous colonization of the thymus by bone-marrow-derived hematopoietic progenitors that migrate through the bloodstream. The current understanding of the nature of thymic immigrants is largely based on data from pre-clinical models. Here, we employed single-cell RNA sequencing (scRNA-seq) to examine the immature postnatal thymocyte population in humans. Integration of bone marrow and peripheral blood precursor datasets identified two putative thymus seeding progenitors that varied in expression of CD7; CD10; and the homing receptors CCR7, CCR9, and ITGB7. Whereas both precursors supported T cell development, only one contributed to intrathymic dendritic cell (DC) differentiation, predominantly of plasmacytoid dendritic cells. Trajectory inference delineated the transcriptional dynamics underlying early human T lineage development, enabling prediction of transcription factor (TF) modules that drive stage-specific steps of human T cell development. This comprehensive dataset defines the expression signature of immature human thymocytes and provides a resource for the further study of human thymopoiesis.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Células Progenitoras Linfoides/citología , Células Progenitoras Linfoides/metabolismo , ARN Citoplasmático Pequeño/genética , Timocitos/citología , Timocitos/metabolismo , Biomarcadores , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Linaje de la Célula/genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunofenotipificación , Análisis de la Célula Individual , Timocitos/inmunología , Transcriptoma
3.
Immunity ; 53(3): 641-657.e14, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32888418

RESUMEN

Metabolic-associated fatty liver disease (MAFLD) represents a spectrum of disease states ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic macrophages, specifically Kupffer cells (KCs), are suggested to play important roles in the pathogenesis of MAFLD through their activation, although the exact roles played by these cells remain unclear. Here, we demonstrated that KCs were reduced in MAFLD being replaced by macrophages originating from the bone marrow. Recruited macrophages existed in two subsets with distinct activation states, either closely resembling homeostatic KCs or lipid-associated macrophages (LAMs) from obese adipose tissue. Hepatic LAMs expressed Osteopontin, a biomarker for patients with NASH, linked with the development of fibrosis. Fitting with this, LAMs were found in regions of the liver with reduced numbers of KCs, characterized by increased Desmin expression. Together, our data highlight considerable heterogeneity within the macrophage pool and suggest a need for more specific macrophage targeting strategies in MAFLD.


Asunto(s)
Células de la Médula Ósea/citología , Activación de Macrófagos/inmunología , Macrófagos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Osteopontina/metabolismo , Animales , Biomarcadores/metabolismo , Células Cultivadas , Desmina/metabolismo , Femenino , Macrófagos del Hígado/citología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteoma/metabolismo , Transcriptoma/genética
4.
Immunity ; 49(2): 312-325.e5, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30076102

RESUMEN

Heterogeneity between different macrophage populations has become a defining feature of this lineage. However, the conserved factors defining macrophages remain largely unknown. The transcription factor ZEB2 is best described for its role in epithelial to mesenchymal transition; however, its role within the immune system is only now being elucidated. We show here that Zeb2 expression is a conserved feature of macrophages. Using Clec4f-cre, Itgax-cre, and Fcgr1-cre mice to target five different macrophage populations, we found that loss of ZEB2 resulted in macrophage disappearance from the tissues, coupled with their subsequent replenishment from bone-marrow precursors in open niches. Mechanistically, we found that ZEB2 functioned to maintain the tissue-specific identities of macrophages. In Kupffer cells, ZEB2 achieved this by regulating expression of the transcription factor LXRα, removal of which recapitulated the loss of Kupffer cell identity and disappearance. Thus, ZEB2 expression is required in macrophages to preserve their tissue-specific identities.


Asunto(s)
Macrófagos del Hígado/citología , Receptores X del Hígado/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Animales , Linaje de la Célula/inmunología , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Macrófagos del Hígado/inmunología , Hígado/citología , Receptores X del Hígado/metabolismo , Pulmón/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
5.
Proc Natl Acad Sci U S A ; 120(36): e2303758120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639582

RESUMEN

In Arabidopsis thaliana, brassinosteroid (BR) signaling and stomatal development are connected through the SHAGGY/GSK3-like kinase BR INSENSITIVE2 (BIN2). BIN2 is a key negative regulator of BR signaling but it plays a dual role in stomatal development. BIN2 promotes or restricts stomatal asymmetric cell division (ACD) depending on its subcellular localization, which is regulated by the stomatal lineage-specific scaffold protein POLAR. BRs inactivate BIN2, but how they govern stomatal development remains unclear. Mapping the single-cell transcriptome of stomatal lineages after triggering BR signaling with either exogenous BRs or the specific BIN2 inhibitor, bikinin, revealed that the two modes of BR signaling activation generate spatiotemporally distinct transcriptional responses. We established that BIN2 is always sensitive to the inhibitor but, when in a complex with POLAR and its closest homolog POLAR-LIKE1, it becomes protected from BR-mediated inactivation. Subsequently, BR signaling in ACD precursors is attenuated, while it remains active in epidermal cells devoid of scaffolds and undergoing differentiation. Our study demonstrates how scaffold proteins contribute to cellular signal specificity of hormonal responses in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brasinoesteroides , División Celular Asimétrica , Glucógeno Sintasa Quinasa 3 , Transducción de Señal , Diferenciación Celular , Arabidopsis/genética , Proteínas Quinasas/genética , Proteínas de Arabidopsis/genética
7.
Mol Cancer ; 22(1): 191, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031106

RESUMEN

Despite major improvements in immunotherapeutic strategies, the immunosuppressive tumor microenvironment remains a major obstacle for the induction of efficient antitumor responses. In this study, we show that local delivery of a bispecific Clec9A-PD-L1 targeted type I interferon (AcTaferon, AFN) overcomes this hurdle by reshaping the tumor immune landscape.Treatment with the bispecific AFN resulted in the presence of pro-immunogenic tumor-associated macrophages and neutrophils, increased motility and maturation profile of cDC1 and presence of inflammatory cDC2. Moreover, we report empowered diversity in the CD8+ T cell repertoire and induction of a shift from naive, dysfunctional CD8+ T cells towards effector, plastic cytotoxic T lymphocytes together with increased presence of NK and NKT cells as well as decreased regulatory T cell levels. These dynamic changes were associated with potent antitumor activity. Tumor clearance and immunological memory, therapeutic immunity on large established tumors and blunted tumor growth at distant sites were obtained upon co-administration of a non-curative dose of chemotherapy.Overall, this study illuminates further application of type I interferon as a safe and efficient way to reshape the suppressive tumor microenvironment and induce potent antitumor immunity; features which are of major importance in overcoming the development of metastases and tumor cell resistance to immune attack. The strategy described here has potential for application across to a broad range of cancer types.


Asunto(s)
Interferón Tipo I , Neoplasias , Humanos , Linfocitos T CD8-positivos , Interferón Tipo I/metabolismo , Microambiente Tumoral , Antígeno B7-H1/metabolismo , Neoplasias/metabolismo , Inmunoterapia , Línea Celular Tumoral
8.
Biol Proced Online ; 25(1): 7, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890441

RESUMEN

BACKGROUND: RNA sequencing has become the gold standard for transcriptome analysis but has an inherent limitation of challenging quantification of low-abundant transcripts. In contrast to microarray technology, RNA sequencing reads are proportionally divided in function of transcript abundance. Therefore, low-abundant RNAs compete against highly abundant - and sometimes non-informative - RNA species. RESULTS: We developed an easy-to-use strategy based on high-affinity RNA-binding oligonucleotides to block reverse transcription and PCR amplification of specific RNA transcripts, thereby substantially reducing their abundance in the final sequencing library. To demonstrate the broad application potential of our method, we applied it to different transcripts and library preparation strategies, including YRNAs in small RNA sequencing of human blood plasma, mitochondrial rRNAs in both 3' end sequencing and long-read sequencing, and MALAT1 in single-cell 3' end sequencing. We demonstrate that the blocking strategy is highly efficient, reproducible, specific, and generally results in better transcriptome coverage and complexity. CONCLUSION: Our method does not require modifications of the library preparation procedure apart from simply adding blocking oligonucleotides to the RT reaction and can thus be easily integrated into virtually any RNA sequencing library preparation protocol.

9.
Plant Physiol ; 188(2): 898-918, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34687312

RESUMEN

As the main photosynthetic instruments of vascular plants, leaves are crucial and complex plant organs. A strict organization of leaf mesophyll and epidermal cell layers orchestrates photosynthesis and gas exchange. In addition, water and nutrients for leaf growth are transported through the vascular tissue. To establish the single-cell transcriptomic landscape of these different leaf tissues, we performed high-throughput transcriptome sequencing of individual cells isolated from young leaves of Arabidopsis (Arabidopsis thaliana) seedlings grown in two different environmental conditions. The detection of approximately 19,000 different transcripts in over 1,800 high-quality leaf cells revealed 14 cell populations composing the young, differentiating leaf. Besides the cell populations comprising the core leaf tissues, we identified subpopulations with a distinct identity or metabolic activity. In addition, we proposed cell-type-specific markers for each of these populations. Finally, an intuitive web tool allows for browsing the presented dataset. Our data present insights on how the different cell populations constituting a developing leaf are connected via developmental, metabolic, or stress-related trajectories.


Asunto(s)
Arabidopsis/metabolismo , Células Vegetales/metabolismo , Hojas de la Planta/metabolismo , Análisis de la Célula Individual , Transcriptoma , Perfilación de la Expresión Génica
10.
EMBO Rep ; 22(5): e51573, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33780134

RESUMEN

Fibroblasts are a major component of the microenvironment of most solid tumours. Recent research elucidated a large heterogeneity and plasticity of activated fibroblasts, indicating that their role in cancer initiation, growth and metastasis is complex and context-dependent. Here, we performed genome-wide expression analysis comparing fibroblasts in normal, inflammatory and tumour-associated skin. Cancer-associated fibroblasts (CAFs) exhibit a fibrotic gene signature in wound-induced tumours, demonstrating persistent extracellular matrix (ECM) remodelling within these tumours. A top upregulated gene in mouse CAFs encodes for PRSS35, a protease capable of collagen remodelling. In human skin, we observed PRSS35 expression uniquely in the stroma of high-grade squamous cell carcinomas. Ablation of PRSS35 in mouse models of wound- or chemically-induced tumorigenesis resulted in aberrant collagen composition in the ECM and increased tumour incidence. Our results indicate that fibrotic enzymes expressed by CAFs can regulate squamous tumour initiation by remodelling the ECM.


Asunto(s)
Matriz Extracelular , Fibroblastos , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Fibrosis , Ratones , Piel , Microambiente Tumoral/genética
11.
Trends Genet ; 33(12): 943-959, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28919019

RESUMEN

Epithelial-to-mesenchymal transition (EMT) is a process in which epithelial cells lose their junctions and polarity to gain a motile mesenchymal phenotype. EMT is essential during embryogenesis and adult physiological processes like wound healing, but is aberrantly activated in pathological conditions like fibrosis and cancer. A series of transcription factors (EMT-inducing transcription factor; EMT-TF) regulate the induction of EMT by repressing the transcription of epithelial genes while activating mesenchymal genes through mechanisms still debated. The nuclear interaction of EMT-TFs with larger protein complexes involved in epigenetic genome modulation has attracted recent attention to explain functions of EMT-TFs during reprogramming and cellular differentiation. In this review, we discuss recent advances in understanding the interplay between epigenetic regulators and EMT transcription factors and how these findings could be used to establish new therapeutic approaches to tackle EMT-related diseases.


Asunto(s)
Plasticidad de la Célula/genética , Epigénesis Genética/genética , Transición Epitelial-Mesenquimal/genética , Diferenciación Celular/genética , Reprogramación Celular/genética , Humanos , Factores de Transcripción/genética
12.
Biochim Biophys Acta Rev Cancer ; 1868(2): 584-591, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28669750

RESUMEN

Reactivation of an embryonic epithelial-to-mesenchymal (EMT) program is commonly accepted as a core component of carcinoma progression. Collectively, EMT and transcription factors (EMT-TFs) of the ZEB, SNAIL and TWIST families are quoted in the same breath for nearly 20years. Recent work on these EMT-TFs has extended their scope, and their typical definition as EMT-inducing factors has become out-of-date. New insights have warranted a re-evaluation of these transcription factors and their pleiotropic functions in physiological and pathological conditions, not solely limited to cell invasion and dissemination.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias/etiología , Factores de Transcripción de la Familia Snail/fisiología , Factores de Transcripción Twist/fisiología , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/fisiología , Animales , Resistencia a Antineoplásicos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Células Madre Neoplásicas/fisiología , Microambiente Tumoral
13.
Cell Mol Life Sci ; 76(10): 1919-1934, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30830237

RESUMEN

Here, we review melanocyte development and how the embryonic melanoblast, although specified to become a melanocyte, is prone to cellular plasticity and is not fully committed to the melanocyte lineage. Even fully differentiated and pigment-producing melanocytes do not always have a stable phenotype. The gradual lineage restriction of neural crest cells toward the melanocyte lineage is determined by both cell-intrinsic and extracellular signals in which differentiation and pathfinding ability reciprocally influence each other. These signals are leveraged by subtle differences in timing and axial positioning. The most extensively studied migration route is the dorsolateral path between the dermomyotome and the prospective epidermis, restricted to melanoblasts. In addition, the embryonic origin of the skin dermis through which neural crest derivatives migrate may also affect the segregation between melanogenic and neurogenic cells in embryos. It is widely accepted that, irrespective of the model organism studied, the immediate precursor of both melanoblast and neurogenic populations is a glial-melanogenic bipotent progenitor. Upon exposure to different conditions, melanoblasts may differentiate into other neural crest-derived lineages such as neuronal cells and vice versa. Key factors that regulate melanoblast migration and patterning will regulate melanocyte homeostasis during different stages of hair cycling in postnatal hair follicles.


Asunto(s)
Diferenciación Celular , Plasticidad de la Célula , Melanocitos/citología , Cresta Neural/citología , Animales , Movimiento Celular , Humanos , Modelos Biológicos , Cresta Neural/embriología , Piel/citología , Piel/embriología , Células Madre/citología
14.
Blood ; 129(8): 981-990, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28069602

RESUMEN

Elevated expression of the Zinc finger E-box binding homeobox transcription factor-2 (ZEB2) is correlated with poor prognosis and patient outcome in a variety of human cancer subtypes. Using a conditional gain-of-function mouse model, we recently demonstrated that ZEB2 is an oncogenic driver of immature T-cell acute lymphoblastic leukemia (T-ALL), a heterogenic subgroup of human leukemia characterized by a high incidence of remission failure or hematological relapse after conventional chemotherapy. Here, we identified the lysine-specific demethylase KDM1A as a novel interaction partner of ZEB2 and demonstrated that mouse and human T-ALLs with increased ZEB2 levels critically depend on KDM1A activity for survival. Therefore, targeting the ZEB2 protein complex through direct disruption of the ZEB2-KDM1A interaction or pharmacological inhibition of the KDM1A demethylase activity itself could serve as a novel therapeutic strategy for this aggressive subtype of human leukemia and possibly other ZEB2-driven malignancies.


Asunto(s)
Benzoatos/farmacología , Ciclopropanos/farmacología , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Proteínas de Homeodominio/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Represoras/metabolismo , Animales , Benzoatos/uso terapéutico , Línea Celular Tumoral , Ciclopropanos/uso terapéutico , Regulación Leucémica de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteínas Represoras/genética , Regulación hacia Arriba , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
16.
Aging Cell ; 23(5): e14120, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38403918

RESUMEN

Long considered to fluctuate between pro- and anti-inflammatory states, it has now become evident that microglia occupy a variegated phenotypic landscape with relevance to aging and neurodegeneration. However, whether specific microglial subsets converge in or contribute to both processes that eventually affect brain function is less clear. To investigate this, we analyzed microglial heterogeneity in a tauopathy mouse model (K18-seeded P301L) and an accelerated aging model (Senescence-Accelerated Mouse-Prone 8, SAMP8) using cellular indexing of transcriptomes and epitopes by sequencing. We found that widespread tau pathology in K18-seeded P301L mice caused a significant change in the number and morphology of microglia, but only a mild overrepresentation of disease-associated microglia. At the cell population-level, we observed a marked upregulation of the calprotectin-encoding genes S100a8 and S100a9. In 9-month-old SAMP8 mice, we identified a unique microglial subpopulation that showed partial similarity with the disease-associated microglia phenotype and was additionally characterized by a high expression of the same calprotectin gene set. Immunostaining for S100A8 revealed that this population was enriched in the hippocampus, correlating with the cognitive impairment observed in this model. However, incomplete colocalization between their residence and markers of neuronal loss suggests regional specificity. Importantly, S100A8-positive microglia were also retrieved in brain biopsies of human AD and tauopathy patients as well as in a biopsy of an aged individual without reported pathology. Thus, the emergence of S100A8-positive microglia portrays a conspicuous commonality between accelerated aging and tauopathy progression, which may have relevance for ensuing brain dysfunction.


Asunto(s)
Envejecimiento , Encéfalo , Calgranulina A , Microglía , Animales , Microglía/metabolismo , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Calgranulina A/metabolismo , Calgranulina A/genética , Envejecimiento/metabolismo , Proteínas tau/metabolismo , Proteínas tau/genética , Humanos , Modelos Animales de Enfermedad , Tauopatías/metabolismo , Tauopatías/patología , Masculino , Ratones Transgénicos
17.
Cell Rep ; 43(4): 114020, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38554280

RESUMEN

Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.


Asunto(s)
Autofagia , Inhibidores de Puntos de Control Inmunológico , Ganglios Linfáticos , Esfingosina/análogos & derivados , Linfocitos T , Autofagia/efectos de los fármacos , Animales , Ganglios Linfáticos/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ratones Endogámicos C57BL , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Células Endoteliales/metabolismo , Esfingosina/farmacología , Esfingosina/metabolismo , Humanos , Lisofosfolípidos/metabolismo , Inmunoterapia/métodos , Movimiento Celular
18.
Cancer Immunol Res ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874582

RESUMEN

CD70 is an attractive target for chimeric antigen receptor (CAR) T-cell therapy for the treatment of both solid and liquid malignancies. However, the functionality of CD70-specific CAR T cells is modest. We optimized a CD70-specific VHH-based CAR (nanoCAR). We evaluated the nanoCARs in clinically relevant models in vitro, using co-cultures of CD70-specific nanoCAR T cells with malignant rhabdoid tumor organoids, and in vivo, using a diffuse large B-cell lymphoma (DLBCL) patient-derived xenograft (PDX) model. Whereas the nanoCAR T cells were highly efficient in organoid co-cultures, they showed only modest efficacy in the PDX model. We determined that fratricide was not causing this loss in efficacy, rather CD70 interaction in cis with the nanoCAR induced exhaustion. Knocking out CD70 in nanoCAR T cells using CRISPR/Cas9, resulted in dramatically enhanced functionality in the DLBCL PDX model. Through single-cell transcriptomics, we obtained evidence that CD70 knock out (KO) CD70-specific nanoCAR T cells were protected from antigen-induced exhaustion. In addition, we demonstrated that WT CD70-specific nanoCAR T cells already exhibited signs of exhaustion shortly after production. Their gene signature strongly overlapped with gene signatures of exhausted CAR T cells. On the other hand, the gene signature of KO CD70-specific nanoCAR T cells overlapped with the gene signature of CAR T-cell infusion products that led to complete responses in chronic lymphatic leukemia patients. Our data show that CARs targeting endogenous T-cell antigens negatively affect CAR T-cell functionality by inducing an exhausted state, which can be overcome by knocking out the specific target.

19.
Nat Commun ; 15(1): 1752, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409190

RESUMEN

Stromal cells support epithelial cell and immune cell homeostasis and play an important role in inflammatory bowel disease (IBD) pathogenesis. Here, we quantify the stromal response to inflammation in pediatric IBD and reveal subset-specific inflammatory responses across colon segments and intestinal layers. Using data from a murine dynamic gut injury model and human ex vivo transcriptomic, protein and spatial analyses, we report that PDGFRA+CD142-/low fibroblasts and monocytes/macrophages co-localize in the intestine. In primary human fibroblast-monocyte co-cultures, intestinal PDGFRA+CD142-/low fibroblasts foster monocyte transition to CCR2+CD206+ macrophages through granulocyte-macrophage colony-stimulating factor (GM-CSF). Monocyte-derived CCR2+CD206+ cells from co-cultures have a phenotype similar to intestinal CCR2+CD206+ macrophages from newly diagnosed pediatric IBD patients, with high levels of PD-L1 and low levels of GM-CSF receptor. The study describes subset-specific changes in stromal responses to inflammation and suggests that the intestinal stroma guides intestinal macrophage differentiation.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Monocitos , Humanos , Animales , Ratones , Niño , Monocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Diferenciación Celular
20.
Cell Rep Med ; 5(5): 101516, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38626769

RESUMEN

Non-small cell lung cancer (NSCLC) is known for high relapse rates despite resection in early stages. Here, we present the results of a phase I clinical trial in which a dendritic cell (DC) vaccine targeting patient-individual neoantigens is evaluated in patients with resected NSCLC. Vaccine manufacturing is feasible in six of 10 enrolled patients. Toxicity is limited to grade 1-2 adverse events. Systemic T cell responses are observed in five out of six vaccinated patients, with T cell responses remaining detectable up to 19 months post vaccination. Single-cell analysis indicates that the responsive T cell population is polyclonal and exhibits the near-entire spectrum of T cell differentiation states, including a naive-like state, but excluding exhausted cell states. Three of six vaccinated patients experience disease recurrence during the follow-up period of 2 years. Collectively, these data support the feasibility, safety, and immunogenicity of this treatment in resected NSCLC.


Asunto(s)
Antígenos de Neoplasias , Vacunas contra el Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Diferenciación Celular , Células Dendríticas , Neoplasias Pulmonares , Linfocitos T , Vacunación , Humanos , Células Dendríticas/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Vacunas contra el Cáncer/inmunología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Masculino , Femenino , Persona de Mediana Edad , Antígenos de Neoplasias/inmunología , Diferenciación Celular/inmunología , Anciano , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA