Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
PLoS Genet ; 15(3): e1007998, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30835731

RESUMEN

Genome sequencing data have recently demonstrated that eukaryote evolution has been remarkably influenced by the acquisition of a large number of genes by horizontal gene transfer (HGT) across different kingdoms. However, in depth-studies on the physiological traits conferred by these accidental DNA acquisitions are largely lacking. Here we elucidate the functional role of Sl gasmin, a gene of a symbiotic virus of a parasitic wasp that has been transferred to an ancestor of the moth species Spodoptera littoralis and domesticated. This gene is highly expressed in circulating immune cells (haemocytes) of larval stages, where its transcription is rapidly boosted by injection of microorganisms into the body cavity. RNAi silencing of Sl gasmin generates a phenotype characterized by a precocious suppression of phagocytic activity by haemocytes, which is rescued when these immune cells are incubated in plasma samples of control larvae, containing high levels of the encoded protein. Proteomic analysis demonstrates that the protein Sl gasmin is released by haemocytes into the haemolymph, where it opsonizes the invading bacteria to promote their phagocytosis, both in vitro and in vivo. Our results show that important physiological traits do not necessarily originate from evolution of pre-existing genes, but can be acquired by HGT events, through unique pathways of symbiotic evolution. These findings indicate that insects can paradoxically acquire selective advantages with the help of their natural enemies.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal/genética , Larva/inmunología , Avispas/inmunología , Animales , Hemolinfa/inmunología , Hemolinfa/virología , Larva/genética , Larva/virología , Filogenia , Proteómica , Simbiosis/genética , Simbiosis/inmunología , Avispas/genética , Avispas/virología
2.
Proc Natl Acad Sci U S A ; 113(12): 3203-8, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26951652

RESUMEN

Honey bee colony losses are triggered by interacting stress factors consistently associated with high loads of parasites and/or pathogens. A wealth of biotic and abiotic stressors are involved in the induction of this complex multifactorial syndrome, with the parasitic mite Varroa destructor and the associated deformed wing virus (DWV) apparently playing key roles. The mechanistic basis underpinning this association and the evolutionary implications remain largely obscure. Here we narrow this research gap by demonstrating that DWV, vectored by the Varroa mite, adversely affects humoral and cellular immune responses by interfering with NF-κB signaling. This immunosuppressive effect of the viral pathogen enhances reproduction of the parasitic mite. Our experimental data uncover an unrecognized mutualistic symbiosis between Varroa and DWV, which perpetuates a loop of reciprocal stimulation with escalating negative effects on honey bee immunity and health. These results largely account for the remarkable importance of this mite-virus interaction in the induction of honey bee colony losses. The discovery of this mutualistic association and the elucidation of the underlying regulatory mechanisms sets the stage for a more insightful analysis of how synergistic stress factors contribute to colony collapse, and for the development of new strategies to alleviate this problem.


Asunto(s)
Abejas/inmunología , Ácaros/fisiología , Simbiosis , Animales , Abejas/parasitología , Abejas/virología
3.
Proc Natl Acad Sci U S A ; 113(34): 9486-91, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27506800

RESUMEN

Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host.


Asunto(s)
Bacillus thuringiensis/patogenicidad , Proteínas Bacterianas/biosíntesis , Endotoxinas/biosíntesis , Proteínas Hemolisinas/biosíntesis , Proteínas de Insectos/antagonistas & inhibidores , Microbiota/inmunología , Control Biológico de Vectores/métodos , Spodoptera/inmunología , Animales , Bacillus thuringiensis/crecimiento & desarrollo , Toxinas de Bacillus thuringiensis , Clostridium/crecimiento & desarrollo , Clostridium/patogenicidad , Productos Agrícolas/parasitología , Regulación de la Expresión Génica , Hemocitos/inmunología , Hemocitos/microbiología , Inmunidad Innata , Terapia de Inmunosupresión , Proteínas de Insectos/genética , Proteínas de Insectos/inmunología , Intestinos/inmunología , Intestinos/microbiología , Larva/genética , Larva/inmunología , Larva/microbiología , Interferencia de ARN , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Serratia/crecimiento & desarrollo , Serratia/patogenicidad , Spodoptera/genética , Spodoptera/microbiología
4.
Proc Natl Acad Sci U S A ; 110(46): 18466-71, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24145453

RESUMEN

Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture.


Asunto(s)
Anabasina/toxicidad , Abejas/inmunología , Abejas/virología , Guanidinas/toxicidad , Inmunidad Innata/efectos de los fármacos , Insecticidas/toxicidad , Tiazoles/toxicidad , Anabasina/química , Animales , Péptidos Catiónicos Antimicrobianos/análisis , Abejas/efectos de los fármacos , Abejas/genética , Técnicas de Silenciamiento del Gen , Guanidinas/química , Insecticidas/química , Italia , Neonicotinoides , Reacción en Cadena en Tiempo Real de la Polimerasa , Estadísticas no Paramétricas , Tiazoles/química
5.
PLoS Pathog ; 8(6): e1002735, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22719246

RESUMEN

The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV), transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-κB. The centrality of NF-κB in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health.


Asunto(s)
Abejas/inmunología , Abejas/parasitología , Interacciones Huésped-Parásitos/inmunología , Infestaciones por Ácaros/veterinaria , Infecciones por Virus ARN/veterinaria , Animales , Coinfección/inmunología , Coinfección/veterinaria , Virus de Insectos/inmunología , Infestaciones por Ácaros/complicaciones , Infestaciones por Ácaros/inmunología , FN-kappa B/inmunología , Infecciones por Virus ARN/complicaciones , Infecciones por Virus ARN/inmunología , Virus ARN/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Varroidae/inmunología
6.
BMC Plant Biol ; 12: 86, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22694925

RESUMEN

BACKGROUND: The fruit fly Bactrocera oleae is the primary biotic stressor of cultivated olives, causing direct and indirect damages that significantly reduce both the yield and the quality of olive oil. To study the olive-B. oleae interaction, we conducted transcriptomic and proteomic investigations of the molecular response of the drupe. The identifications of genes and proteins involved in the fruit response were performed using a Suppression Subtractive Hybridisation technique and a combined bi-dimensional electrophoresis/nanoLC-ESI-LIT-MS/MS approach, respectively. RESULTS: We identified 196 ESTs and 26 protein spots as differentially expressed in olives with larval feeding tunnels. A bioinformatic analysis of the identified non-redundant EST and protein collection indicated that different molecular processes were affected, such as stress response, phytohormone signalling, transcriptional control and primary metabolism, and that a considerable proportion of the ESTs could not be classified. The altered expression of 20 transcripts was also analysed by real-time PCR, and the most striking differences were further confirmed in the fruit of a different olive variety. We also cloned the full-length coding sequences of two genes, Oe-chitinase I and Oe-PR27, and showed that these are wound-inducible genes and activated by B. oleae punctures. CONCLUSIONS: This study represents the first report that reveals the molecular players and signalling pathways involved in the interaction between the olive fruit and its most damaging biotic stressor. Drupe response is complex, involving genes and proteins involved in photosynthesis as well as in the production of ROS, the activation of different stress response pathways and the production of compounds involved in direct defence against phytophagous larvae. Among the latter, trypsin inhibitors should play a major role in drupe resistance reaction.


Asunto(s)
Olea/fisiología , Transducción de Señal , Estrés Fisiológico , Tephritidae/fisiología , Secuencia de Aminoácidos , Animales , Biología Computacional , Etiquetas de Secuencia Expresada/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Herbivoria , Datos de Secuencia Molecular , Olea/genética , Olea/metabolismo , Fotosíntesis , Proteoma/análisis , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Transcriptoma
7.
Insects ; 12(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466542

RESUMEN

Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) is an endophagous parasitoid of the larval stages of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera, Noctuidae). During oviposition, T. nigriceps injects into the host body, along with the egg, the venom, the calyx fluid, which contains a Polydnavirus (T. nigriceps BracoVirus: TnBV), and the Ovarian Proteins (OPs). Although viral gene expression in the host reaches detectable levels after a few hours, a precocious disruption of the host metabolism and immune system is observed right after parasitization. This alteration appears to be induced by female secretions including TnBV venom and OPs. OPs, originating from the ovarian calyx cells, are involved in the induction of precocious symptoms in the host immune system alteration. It is known that OPs in braconid and ichneumonid wasps can interfere with the cellular immune response before Polydnavirus infects and expresses its genes in the host tissues. Here we show that T. nigriceps OPs induce several alterations on host haemocytes that trigger cell death. The OP injection induces an extensive oxidative stress and a disorganization of actin cytoskeleton and these alterations can explain the high-level of haemocyte mortality, the loss of haemocyte functionality, and so the reduction in encapsulation ability by the host.

8.
Genome ; 52(8): 692-700, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19767899

RESUMEN

Estimation of the genetic relatedness of traditional olive cultivars with genetic markers and phenotypic data enables progress in plant breeding, management of genetic resources, and protection of both breeders' rights and certified premium products. We used amplified fragment length polymorphisms (AFLPs), simple sequence repeats (SSRs), and quantitative and qualitative morphological traits, including characteristics recommended for variety registration, to study genetic diversity and relationships in the olive at different levels. The 14 varieties analyzed, which are used for the production of Protected Denomination of Origin extra-virgin olive oil, represent the most important cultivars in the Campania region of Italy and typify a regional diversity characteristic of traditional olive cultivation. The genetic distances obtained with the two DNA marker systems were significantly correlated, as were those obtained by quantitative and qualitative traits. A lower but significant correlation was also observed between distances based on molecular markers and quantitative traits, but qualitative traits, even if sampled in high numbers, failed to describe the pattern of molecular similarity. Our data imply that the type and the number of phenotypic traits scored can greatly influence the outcome of the analysis, and care should be taken when qualitative and quantitative data are combined. Furthermore, the data indicate that the two molecular marker systems are useful for investigating genetic relationships, but they may also be used to complement and assist the traditional registration of varieties. We propose that since the information provided by molecular and morphological marker systems in olive is different, they should serve different purposes.


Asunto(s)
Repeticiones de Microsatélite/genética , Olea/clasificación , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Marcadores Genéticos , Variación Genética , Genotipo , Italia , Olea/genética , Fenotipo , Filogenia , Polimorfismo Genético
9.
Environ Entomol ; 47(3): 609-622, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29534165

RESUMEN

A new gall midge, Asphondylia nepetae sp. n. Viggiani (Diptera: Cecidomyiidae), causing flower gall on Clinopodium nepeta (L.) Kuntze (Lamiaceae), is described from Europe. The morphological characteristics of adult, larvae, and pupa are described and illustrated. Molecular approach (by sequencing 28S-D2, ITS2, and COI) confirmed that A. nepetae is a distinct species. The development of the gall is always associated with the presence of the fungus Botryosphaeria dothidea (Moug.: Fr.) Ces. and De Not. (Botryosphaeriales: Botryosphaeriaceae). The new species can complete several generations per year, on the flowers of the same host plant and its adults emerge from late spring to autumn. Pupae overwinter inside peculiar flower galls in a state of quiescence. The impact of the pest is highly variable with a percentage of flowers infested that ranged between 3 and 57.5% in the sampled years. Insect mortality was, at least in part, due to parasitoids that attack the young stages of the midge. Among them, the dominant species was Sigmophora brevicornis (Panzer) (Chalcidoidea: Eulophidae).


Asunto(s)
Ascomicetos/fisiología , Herbivoria , Lamiaceae/fisiología , Nematocera/clasificación , Tumores de Planta , Animales , Complejo IV de Transporte de Electrones/análisis , Cadena Alimentaria , Himenópteros/fisiología , Proteínas de Insectos/análisis , Italia , Lamiaceae/microbiología , Larva/clasificación , Larva/crecimiento & desarrollo , Larva/parasitología , Larva/fisiología , Nematocera/crecimiento & desarrollo , Nematocera/parasitología , Nematocera/fisiología , Filogenia , Pupa/clasificación , Pupa/crecimiento & desarrollo , Pupa/parasitología , Pupa/fisiología
10.
Insect Biochem Mol Biol ; 37(5): 453-65, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17456440

RESUMEN

Parasitism by the endophagous braconid Aphidius ervi (Hymenoptera, Braconidae) has a negative impact on the reproductive activity of its host, Acyrthosiphon pisum (Homoptera, Aphididae). The host castration is induced by the parasitoid venom and is reproduced by the injection of chromatographic fractions highly enriched with two proteins, of 18 (p18) and 36 kDa (p36) in size, respectively. Here we demonstrate that these bioactive proteins trigger apoptosis of the cells in the germaria and ovariole sheath of the host aphid. Both p18 and p36 were internally sequenced and the gathered information was matched against the deduced amino acid sequence of the putative proteins encoded by cDNA clones, randomly selected from a cDNA library, which was raised using mRNA extracted from A. ervi venom glands. The identified cDNA clones contained an insert corresponding to the RNA product of an interrupted gene, made of six exons and five introns, which was found to be transcribed at higher levels in adult females of A. ervi than in males. This gene codes for a putative protein composed of 541 amino acids, with a calculated molecular mass of 56.9 kDa, which contained the amino acid sequences experimentally determined for both p18 and p36. This putative protein showed a significant level of sequence identity with gamma-glutamyl transpeptidases (gamma-GT), and it was named Ae-gamma-GT. The gamma-GTs are enzymes which play a key role in the metabolism of glutathione (GSH) and, as observed in most organisms, they are membrane-bound heterodimers formed by a large and a small subunit, which originate by post-translational processing of a single-chain precursor. The expression in insect cells of Ae-gamma-GT confirmed the occurrence of the expected post-translational processing, and demonstrated that, unlike other gamma-GTs, this protein is secreted in the extracellular environment. A measurable gamma-GT activity was detected in the venom of A. ervi and in the chromatographic fractions containing Ae-gamma-GT. Thus, we suggest that this venom protein may induce apoptosis in the host ovarioles by generating an alteration of the GSH metabolism and a consequent oxidative stress.


Asunto(s)
Áfidos/parasitología , Apoptosis/efectos de los fármacos , Venenos de Avispas/farmacología , Avispas/enzimología , gamma-Glutamiltransferasa/farmacología , Secuencia de Aminoácidos , Animales , Áfidos/citología , Áfidos/efectos de los fármacos , Secuencia de Bases , Fraccionamiento Químico , Femenino , Masculino , Datos de Secuencia Molecular , Ovario/citología , Ovario/efectos de los fármacos , Alineación de Secuencia , Análisis de Secuencia de Proteína , Venenos de Avispas/química , Venenos de Avispas/enzimología , Avispas/genética , Avispas/fisiología , gamma-Glutamiltransferasa/química , gamma-Glutamiltransferasa/aislamiento & purificación
11.
J Insect Physiol ; 101: 73-81, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28694149

RESUMEN

The host regulation process has been widely investigated in endophagous parasitoid wasps, which in most cases finely interact with living hosts (i.e. koinobiont parasitoids). In contrast, only very limited information is available for ectophagous parasitoids that permanently paralyze and rapidly suppress their victims (i.e. idiobiont parasitoids). Here we try to fill this research gap by investigating the host regulation by Bracon nigricans, an ectophagous idiobiont wasp species. Parasitism, mainly by venom action, is able to redirect host metabolism in order to enhance its nutritional suitability for the developing parasitoid larvae and to provide the required metabolic support to host tissues. The observed alterations of the host titers of haemolymph proteins, carbohydrates and acylglycerols are associated with a parasitoid-induced mobilization of nutrients stored in the fat body. This tissue undergoes a controlled degradation mediated by a close surface interaction with haemocytes, where a cathepsin L activity is localized, as demonstrated by immunolocalization, biochemical and transcriptional data. B. nigricans parasitism does not markedly influence the survival of haemocytes, even though a persistent suppression of the immune competence is observed in parasitized hosts, which show a reduced capacity to encapsulate and melanize non-self objects. These immune alterations likely allow a more efficient food uptake and use by the ectophagous larvae. The obtained results indicate that the host regulation process in basal lineages of parasitic Hymenoptera is more complex than expected and shares functional similarities with adaptive strategies occurring in derived koinobiont species.


Asunto(s)
Interacciones Huésped-Parásitos , Spodoptera/parasitología , Avispas/fisiología , Animales , Inmunidad Innata , Larva/crecimiento & desarrollo , Larva/parasitología , Larva/fisiología , Spodoptera/crecimiento & desarrollo , Spodoptera/inmunología , Spodoptera/metabolismo , Avispas/crecimiento & desarrollo
12.
J Insect Physiol ; 64: 90-7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24662467

RESUMEN

Insect immune defences rely on cellular and humoral responses targeting both microbial pathogens and metazoan parasites. Accumulating evidence indicates functional cross-talk between these two branches of insect immunity, but the underlying molecular mechanisms are still largely unknown. We recently described, in the tobacco budworm Heliothis virescens, the presence of amyloid fibers associated with melanogenesis in immune capsules formed by hemocytes, and identified a protein (P102) involved in their assembly. Non-self objects coated by antibodies directed against this protein escaped hemocyte encapsulation, suggesting that P102 might coordinate humoral and cellular defence responses at the surface of foreign invaders. Here we report the identification of a cDNA coding for a protein highly similar to P102 in a related Lepidoptera species, Spodoptera littoralis. Its transcript was abundant in the hemocytes and the protein accumulated in large cytoplasmic compartments, closely resembling the localization pattern of P102 in H. virescens. RNAi-mediated gene silencing provided direct evidence for the role played by this protein in the immune response. Oral delivery of dsRNA molecules directed against the gene strongly suppressed the encapsulation and melanization response, while hemocoelic injections did not result in evident phenotypic alterations. Shortly after their administration, dsRNA molecules were found in midgut cells, en route to the hemocytes where the target gene was significantly down-regulated. Taken together, our data demonstrate that P102 is a functionally conserved protein with a key role in insect immunity. Moreover, the ability to target this gene by dsRNA oral delivery may be exploited to develop novel technologies of pest control, based on immunosuppression as a strategy for enhancing the impact of natural antagonists.


Asunto(s)
Proteínas de Insectos/genética , Proteínas de Insectos/inmunología , Spodoptera/genética , Spodoptera/inmunología , Animales , Secuencia de Bases , Silenciador del Gen , Hemocitos/inmunología , Inmunidad Innata , Control de Insectos , Larva/inmunología , Melaninas/metabolismo , Datos de Secuencia Molecular , Interferencia de ARN , ARN Bicatenario
13.
PLoS One ; 9(12): e113988, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25438149

RESUMEN

The biological control of insect pests is based on the use of natural enemies. However, the growing information on the molecular mechanisms underpinning the interactions between insects and their natural antagonists can be exploited to develop "bio-inspired" pest control strategies, mimicking suppression mechanisms shaped by long co-evolutionary processes. Here we focus on a virulence factor encoded by the polydnavirus associated with the braconid wasp Toxoneuron nigriceps (TnBV), an endophagous parasitoid of noctuid moth larvae. This virulence factor (TnBVANK1) is a member of the viral ankyrin (ANK) protein family, and appears to be involved both in immunosuppression and endocrine alterations of the host. Transgenic tobacco plants expressing TnBVANK1 showed insecticide activity and caused developmental delay in Spodoptera littoralis larvae feeding on them. This effect was more evident in a transgenic line showing a higher number of transcripts of the viral gene. However, this effect was not associated with evidence of translocation into the haemocoel of the entire protein, where the receptors of TnBVANK1 are putatively located. Indeed, immunolocalization experiments evidenced the accumulation of this viral protein in the midgut, where it formed a thick layer coating the brush border of epithelial cells. In vitro transport experiments demonstrated that the presence of recombinant TnBVANK1 exerted a dose-dependent negative impact on amino acid transport. These results open new perspectives for insect control and stimulate additional research efforts to pursue the development of novel bioinsecticides, encoded by parasitoid-derived genes. However, future work will have to carefully evaluate any effect that these molecules may have on beneficial insects and on non-target organisms.


Asunto(s)
Ancirinas/farmacología , Insecticidas/farmacología , Lepidópteros/fisiología , Nicotiana/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Factores de Virulencia/farmacología , Animales , Ancirinas/genética , Arginina/metabolismo , Dicroismo Circular , Vectores Genéticos/administración & dosificación , Larva/fisiología , Lepidópteros/embriología , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente/parasitología , Polydnaviridae/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/parasitología , Proteínas Virales/genética , Proteínas Virales/farmacología , Factores de Virulencia/genética
14.
Insect Biochem Mol Biol ; 39(11): 801-13, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19786101

RESUMEN

We report the cloning of a gene and the characterization of the encoded protein, which is released by the teratocytes of the parasitoid Aphidius ervi in the haemocoel of the host aphid Acyrthosiphon pisum. The studied protein was identified by LC-MS/MS, and the gathered information used for isolating the full length cDNA. The corresponding gene was made of 3 exons and 2 introns, and was highly expressed in the adult wasps and in parasitized hosts. The translation product, which was named Ae-ENO, showed a very high level of sequence identity with insect enolases. In vivo immunodetection experiments evidenced Ae-ENO localization in round spots, present in the teratocytes and released in the host haemocoel. Moreover, strong immunoreactivity was detected on the surface of A. ervi larvae and of host embryos. Ae-ENO expressed in insect cells was not secreted in the medium, indicating the occurrence in the teratocytes of an unknown pathway for Ae-ENO release. The recombinant protein produced in bacteria under native conditions was a dimer, with evident enolase activity (K(m) = 0.086 +/- 0.017 mM). Enolase is a well known enzyme in cell metabolism, which, however, is associated with a multifunctional role in disease, when present in the extracellular environment, on the surface of prokaryotic and eukaryotic cells. In these cases, the enolase mediates the activation of enzymes involved in the invasion of tissues by pathogens and tumour cells, and in the evasion of host immune response. The possible role played by Ae-ENO in the host regulation process is discussed in the light of this information.


Asunto(s)
Áfidos/parasitología , Espacio Extracelular/enzimología , Proteínas de Insectos/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Avispas/enzimología , Secuencia de Aminoácidos , Animales , Espacio Extracelular/química , Espacio Extracelular/genética , Interacciones Huésped-Parásitos , Proteínas de Insectos/química , Proteínas de Insectos/genética , Cinética , Datos de Secuencia Molecular , Fosfopiruvato Hidratasa/química , Fosfopiruvato Hidratasa/genética , Alineación de Secuencia , Avispas/química , Avispas/genética
15.
J Gen Virol ; 88(Pt 1): 92-104, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17170441

RESUMEN

Polydnaviruses (PDVs) are obligate symbionts of hymenopteran parasitoids of lepidopteran larvae that induce host immunosuppression and physiological redirection. PDVs include bracoviruses (BVs) and ichnoviruses (IVs), which are associated with braconid and ichneumonid wasps, respectively. In this study, the gene family encoding IkappaB-like proteins in the BVs associated with Cotesia congregata (CcBV) and Toxoneuron nigriceps (TnBV) was analysed. PDV-encoded IkappaB-like proteins (ANK) are similar to insect and mammalian IkappaB, an inhibitor of the transcription factor nuclear factor kappaB (NF-kappaB), but display shorter ankyrin domains and lack the regulatory domains for signal-mediated degradation and turnover. Phylogenetic analysis of ANK proteins indicates that those of IVs and BVs are closely related, even though these two taxa are believed to lack a common ancestor. Starting from a few hours after parasitization, the transcripts of BV ank genes were detected, at different levels, in several host tissues. The structure of the predicted proteins suggests that they may stably bind NF-kappaB/Rel transcription factors of the tumour necrosis factor (TNF)/Toll immune pathway. Accordingly, after bacterial challenge of Heliothis virescens host larvae parasitized by T. nigriceps, NF-kappaB immunoreactive material failed to enter the nucleus of host haemocytes and fat body cells. Moreover, transfection experiments in human HeLa cells demonstrated that a TnBV ank1 gene product reduced the efficiency of the TNF-alpha-induced expression of a reporter gene under NF-kappaB transcriptional control. Altogether, these results suggest strongly that TnBV ANK proteins cause retention of NF-kappaB/Rel factors in the cytoplasm and may thus contribute to suppression of the immune response in parasitized host larvae.


Asunto(s)
Proteínas I-kappa B/genética , Polydnaviridae/genética , Proteínas Virales/genética , Avispas/virología , Animales , Regulación Viral de la Expresión Génica , Genoma Viral , Proteínas I-kappa B/química , Polydnaviridae/metabolismo , Polydnaviridae/fisiología , Análisis de Secuencia de ADN , Proteínas Virales/química , Proteínas Virales/metabolismo
16.
Arch Insect Biochem Physiol ; 61(3): 157-69, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16482584

RESUMEN

The genomic sequence of the bracovirus associated with the wasp Toxoneuron nigriceps (Hymenoptera, Braconidae) (TnBV), an endophagous parasitoid of the tobacco budworm larvae, Heliothis virescens (Lepidoptera, Noctuidae), contains a large gene family coding for protein tyrosine phosphatases (PTPs). Here we report the characterization of cDNAs for two of the viral PTPs isolated by screening a cDNA library from haemocytes of parasitized host larvae. The two encoded proteins show 70% amino acid identity and are expressed in the fat body of parasitized hosts. In addition, one was expressed in inactivated prothoracic glands (PTGs), 24 h after parasitoid oviposition. The rapid block of ecdysteroidogenesis does not appear to be due to inhibition of general protein synthesis, as indirectly indicated by the unaltered S6 kinase activity in the cytosolic extracts of basal PTGs from parasitized host larvae. Rather, TnBV PTP over-expression in inactivated host PTGs suggests that gland function may be affected by the disruption of the phosphorylation balance of key proteins regulating points upstream from the ribosomal S6 phosphorylation in the PTTH signaling cascade.


Asunto(s)
Lepidópteros/fisiología , Lepidópteros/parasitología , Polydnaviridae/enzimología , Proteínas Tirosina Fosfatasas/fisiología , Avispas/virología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN Complementario/genética , Cuerpo Adiposo/fisiología , Datos de Secuencia Molecular , Polydnaviridae/genética , Biosíntesis de Proteínas/fisiología , Proteínas Tirosina Fosfatasas/biosíntesis , Proteínas Tirosina Fosfatasas/genética , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Quinasas S6 Ribosómicas/fisiología , Alineación de Secuencia , Análisis de Secuencia de ADN , Avispas/genética
17.
Insect Mol Biol ; 12(1): 9-17, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12542631

RESUMEN

Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae) is an endophagous parasitoid of larval stages of the tobacco budworm, Heliothis virescens (F.) (Lepidoptera: Noctuidae). This parasitoid is associated with a polydnavirus (TnBV), injected at oviposition along with the egg, and involved in the disruption of host immune reaction and endocrine balance. This paper reports the molecular characterization of TnBV2, one of the most abundant genes in the TnBV genome. TnBV2 expression produces a mature 0.6 kb transcript in fat body, prothoracic glands and haemocytes, as early as 6 h after parasitoid oviposition. Only in haemocytes a specific longer transcript of 2.5 kb is found 24 h after parasitization. The putative translation product of TnBV2 contains a retroviral type aspartyl protease domain. The possible origin and functional role of this TnBV gene are discussed.


Asunto(s)
Ácido Aspártico Endopeptidasas/biosíntesis , Himenópteros/virología , Lepidópteros/parasitología , Polydnaviridae/enzimología , Polydnaviridae/genética , Secuencia de Aminoácidos , Animales , Ácido Aspártico Endopeptidasas/química , Ácido Aspártico Endopeptidasas/genética , Secuencia de Bases , Northern Blotting , Mapeo Cromosómico , ADN Viral/química , ADN Viral/genética , Femenino , Regulación Viral de la Expresión Génica , Biblioteca de Genes , Genoma Viral , Hibridación in Situ , Datos de Secuencia Molecular , Polydnaviridae/química , ARN Viral/química , ARN Viral/genética , Alineación de Secuencia
18.
J Virol ; 78(23): 13090-103, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15542661

RESUMEN

The relationship between parasitic wasps and bracoviruses constitutes one of the few known mutualisms between viruses and eukaryotes. The virions produced in the wasp ovaries are injected into host lepidopteran larvae, where virus genes are expressed, allowing successful development of the parasite by inducing host immune suppression and developmental arrest. Bracovirus-bearing wasps have a common phylogenetic origin, and contemporary bracoviruses are hypothesized to have been inherited by chromosomal transmission from a virus that originally integrated into the genome of the common ancestor wasp living 73.7 +/- 10 million years ago. However, so far no conserved genes have been described among different braconid wasp subfamilies. Here we show that a gene family is present in bracoviruses of different braconid wasp subfamilies (Cotesia congregata, Microgastrinae, and Toxoneuron nigriceps, Cardiochilinae) which likely corresponds to an ancient component of the bracovirus genome that might have been present in the ancestral virus. The genes encode proteins belonging to the protein tyrosine phosphatase family, known to play a key role in the control of signal transduction pathways. Bracovirus protein tyrosine phosphatase genes were shown to be expressed in different tissues of parasitized hosts, and two protein tyrosine phosphatases were produced with recombinant baculoviruses and tested for their biochemical activity. One protein tyrosine phosphatase is a functional phosphatase. These results strengthen the hypothesis that protein tyrosine phosphatases are involved in virally induced alterations of host physiology during parasitism.


Asunto(s)
Familia de Multigenes , Polydnaviridae/genética , Proteínas Tirosina Fosfatasas/genética , Secuencia de Aminoácidos , Animales , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA