Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(19): 10568-10589, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37739411

RESUMEN

Stringent control of centrosome duplication and separation is important for preventing chromosome instability. Structural and numerical alterations in centrosomes are hallmarks of neoplastic cells and contribute to tumorigenesis. We show that a Centrosome Amplification 20 (CA20) gene signature is associated with high expression of the Tripartite Motif (TRIM) family member E3 ubiquitin ligase, TRIM69. TRIM69-ablation in cancer cells leads to centrosome scattering and chromosome segregation defects. We identify Serine/threonine-protein kinase 3 (MST2) as a new direct binding partner of TRIM69. TRIM69 redistributes MST2 to the perinuclear cytoskeleton, promotes its association with Polo-like kinase 1 (PLK1) and stimulates MST2 phosphorylation at S15 (a known PLK1 phosphorylation site that is critical for centrosome disjunction). TRIM69 also promotes microtubule bundling and centrosome segregation that requires PRC1 and DYNEIN. Taken together, we identify TRIM69 as a new proximal regulator of distinct signaling pathways that regulate centrosome dynamics and promote bipolar mitosis.


Asunto(s)
Centrosoma , Segregación Cromosómica , Transducción de Señal , Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Mitosis/genética , Fosforilación , Huso Acromático/metabolismo
2.
J Am Chem Soc ; 145(28): 15065-15070, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37395736

RESUMEN

Peptides have historically been underutilized for covalent inhibitor discovery, despite their unique abilities to interact with protein surfaces and interfaces. This is in part due to a lack of methods for screening and identifying covalent peptide ligands. Here, we report a method to identify covalent cyclic peptide inhibitors in mRNA display. We combine co- and post-translational library diversification strategies to create cyclic libraries with reactive dehydroalanines (Dhas), which we employ in selections against two model targets. The most potent hits exhibit low nanomolar inhibitory activities and disrupt known protein-protein interactions with their selected targets. Overall, we establish Dhas as electrophiles for covalent inhibition and showcase how separate library diversification methods can work synergistically to dispose mRNA display to novel applications like covalent inhibitor discovery.


Asunto(s)
Biblioteca de Péptidos , Péptidos Cíclicos , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/genética , ARN Mensajero/genética , Péptidos/genética
4.
J Natl Compr Canc Netw ; 20(3): 218-223, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35276675

RESUMEN

The stability of the human genome depends upon a delicate balance between replication by high- and low-fidelity DNA polymerases. Aberrant replication by error-prone polymerases or loss of function of high-fidelity polymerases predisposes to genetic instability and, in turn, cancer. DNA polymerase epsilon (Pol ε) is a high-fidelity, processive polymerase that is responsible for the majority of leading strand synthesis, and mutations in Pol ε have been increasingly associated with various human malignancies. The clinical significance of Pol ε mutations, including how and whether they should influence management decisions, remains poorly understood. In this report, we describe a 24-year-old man with an aggressive stage IV high-grade, poorly differentiated colon carcinoma who experienced a dramatic response to single-agent checkpoint inhibitor immunotherapy after rapidly progressing on standard chemotherapy. His response was complete and durable and has been maintained for more than 48 months. Genetic testing revealed a P286R mutation in the endonuclease domain of POLE and an elevated tumor mutational burden of 126 mutations per megabase, both of which have been previously associated with response to immunotherapy. Interestingly, tumor staining for PD-L1 was negative. This case study highlights the importance of genetic profiling of both early and late-stage cancers, the clinical significance of POLE mutations, and how the interplay between genetic instability and immune-checkpoint blockade can impact clinical decision-making.


Asunto(s)
Neoplasias Colorrectales , ADN Polimerasa II , Adulto , Biomarcadores de Tumor , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , ADN Polimerasa II/genética , Humanos , Inmunoterapia , Masculino , Mutación , Adulto Joven
5.
J Biol Chem ; 295(8): 2359-2374, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31896573

RESUMEN

The maternal embryonic leucine zipper kinase (MELK) has been implicated in the regulation of cancer cell proliferation. RNAi-mediated MELK depletion impairs growth and causes G2/M arrest in numerous cancers, but the mechanisms underlying these effects are poorly understood. Furthermore, the MELK inhibitor OTSSP167 has recently been shown to have poor selectivity for MELK, complicating the use of this inhibitor as a tool compound to investigate MELK function. Here, using a cell-based proteomics technique called multiplexed kinase inhibitor beads/mass spectrometry (MIB/MS), we profiled the selectivity of two additional MELK inhibitors, NVS-MELK8a (8a) and HTH-01-091. Our results revealed that 8a is a highly selective MELK inhibitor, which we further used for functional studies. Resazurin and crystal violet assays indicated that 8a decreases triple-negative breast cancer cell viability, and immunoblotting revealed that impaired growth is due to perturbation of cell cycle progression rather than induction of apoptosis. Using double-thymidine synchronization and immunoblotting, we observed that MELK inhibition delays mitotic entry, which was associated with delayed activation of Aurora A, Aurora B, and cyclin-dependent kinase 1 (CDK1). Following this delay, cells entered and completed mitosis. Using live-cell microscopy of cells harboring fluorescent proliferating cell nuclear antigen, we confirmed that 8a significantly and dose-dependently lengthens G2 phase. Collectively, our results provide a rationale for using 8a as a tool compound for functional studies of MELK and indicate that MELK inhibition delays mitotic entry, likely via transient G2/M checkpoint activation.


Asunto(s)
Espectrometría de Masas , Mitosis , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Histonas/metabolismo , Humanos , Mitosis/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias de la Mama Triple Negativas/enzimología , Neoplasias de la Mama Triple Negativas/patología
6.
Nucleic Acids Res ; 44(9): 4174-88, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-26883629

RESUMEN

In cultured cancer cells the E3 ubiquitin ligase Rad18 activates Trans-Lesion Synthesis (TLS) and the Fanconi Anemia (FA) pathway. However, physiological roles of Rad18 in DNA damage tolerance and carcinogenesis are unknown and were investigated here. Primary hematopoietic stem and progenitor cells (HSPC) co-expressed RAD18 and FANCD2 proteins, potentially consistent with a role for Rad18 in FA pathway function during hematopoiesis. However, hematopoietic defects typically associated with fanc-deficiency (decreased HSPC numbers, reduced engraftment potential of HSPC, and Mitomycin C (MMC) -sensitive hematopoiesis), were absent in Rad18(-/-) mice. Moreover, primary Rad18(-/-) mouse embryonic fibroblasts (MEF) retained robust Fancd2 mono-ubiquitination following MMC treatment. Therefore, Rad18 is dispensable for FA pathway activation in untransformed cells and the Rad18 and FA pathways are separable in hematopoietic cells. In contrast with responses to crosslinking agents, Rad18(-/-) HSPC were sensitive to in vivo treatment with the myelosuppressive agent 7,12 Dimethylbenz[a]anthracene (DMBA). Rad18-deficient fibroblasts aberrantly accumulated DNA damage markers after DMBA treatment. Moreover, in vivo DMBA treatment led to increased incidence of B cell malignancy in Rad18(-/-) mice. These results identify novel hematopoietic functions for Rad18 and provide the first demonstration that Rad18 confers DNA damage tolerance and tumor-suppression in a physiological setting.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/fisiología , Células Madre Hematopoyéticas/fisiología , Animales , Células Cultivadas , Reparación del ADN , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Hematopoyesis , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Mutágenos/farmacología
7.
J Biol Chem ; 291(45): 23719-23733, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27621311

RESUMEN

KEAP1 is a substrate adaptor protein for a CUL3-based E3 ubiquitin ligase. Ubiquitylation and degradation of the antioxidant transcription factor NRF2 is considered the primary function of KEAP1; however, few other KEAP1 substrates have been identified. Because KEAP1 is altered in a number of human pathologies and has been proposed as a potential therapeutic target therein, we sought to better understand KEAP1 through systematic identification of its substrates. Toward this goal, we combined parallel affinity capture proteomics and candidate-based approaches. Substrate-trapping proteomics yielded NRF2 and the related transcription factor NRF1 as KEAP1 substrates. Our targeted investigation of KEAP1-interacting proteins revealed MCM3, an essential subunit of the replicative DNA helicase, as a new substrate. We show that MCM3 is ubiquitylated by the KEAP1-CUL3-RBX1 complex in cells and in vitro Using ubiquitin remnant profiling, we identify the sites of KEAP1-dependent ubiquitylation in MCM3, and these sites are on predicted exposed surfaces of the MCM2-7 complex. Unexpectedly, we determined that KEAP1 does not regulate total MCM3 protein stability or subcellular localization. Our analysis of a KEAP1 targeting motif in MCM3 suggests that MCM3 is a point of direct contact between KEAP1 and the MCM hexamer. Moreover, KEAP1 associates with chromatin in a cell cycle-dependent fashion with kinetics similar to the MCM2-7 complex. KEAP1 is thus poised to affect MCM2-7 dynamics or function rather than MCM3 abundance. Together, these data establish new functions for KEAP1 within the nucleus and identify MCM3 as a novel substrate of the KEAP1-CUL3-RBX1 E3 ligase.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Componente 3 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Animales , Autofagia , Proteínas Portadoras/metabolismo , Ciclo Celular , Línea Celular , Cromatina/metabolismo , Proteínas Cullin/metabolismo , Células HEK293 , Células HeLa , Humanos , Ratones , Modelos Moleculares , Mapas de Interacción de Proteínas , Ubiquitina/metabolismo , Ubiquitinación
8.
Nucleic Acids Res ; 41(5): 3079-93, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23345618

RESUMEN

Trans-lesion DNA synthesis (TLS) is a DNA damage-tolerance mechanism that uses low-fidelity DNA polymerases to replicate damaged DNA. The inherited cancer-propensity syndrome xeroderma pigmentosum variant (XPV) results from error-prone TLS of UV-damaged DNA. TLS is initiated when the Rad6/Rad18 complex monoubiquitinates proliferating cell nuclear antigen (PCNA), but the basis for recruitment of Rad18 to PCNA is not completely understood. Here, we show that Rad18 is targeted to PCNA by DNA polymerase eta (Polη), the XPV gene product that is mutated in XPV patients. The C-terminal domain of Polη binds to both Rad18 and PCNA and promotes PCNA monoubiquitination, a function unique to Polη among Y-family TLS polymerases and dissociable from its catalytic activity. Importantly, XPV cells expressing full-length catalytically-inactive Polη exhibit increased recruitment of other error-prone TLS polymerases (Polκ and Polι) after UV irradiation. These results define a novel non-catalytic role for Polη in promoting PCNA monoubiquitination and provide a new potential mechanism for mutagenesis and genome instability in XPV individuals.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/fisiología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Secuencia de Consenso , Daño del ADN , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Inducción Enzimática , Inestabilidad Genómica , Humanos , Datos de Secuencia Molecular , Unión Proteica , Proteínas Quinasas/metabolismo , Transporte de Proteínas , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas , Xerodermia Pigmentosa/enzimología , Xerodermia Pigmentosa/genética
9.
Nucleic Acids Res ; 41(4): 2296-312, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23295675

RESUMEN

The E3 ubiquitin ligase Rad18 mediates tolerance of replication fork-stalling bulky DNA lesions, but whether Rad18 mediates tolerance of bulky DNA lesions acquired outside S-phase is unclear. Using synchronized cultures of primary human cells, we defined cell cycle stage-specific contributions of Rad18 to genome maintenance in response to ultraviolet C (UVC) and H(2)O(2)-induced DNA damage. UVC and H(2)O(2) treatments both induced Rad18-mediated proliferating cell nuclear antigen mono-ubiquitination during G(0), G(1) and S-phase. Rad18 was important for repressing H(2)O(2)-induced (but not ultraviolet-induced) double strand break (DSB) accumulation and ATM S1981 phosphorylation only during G(1), indicating a specific role for Rad18 in processing of oxidative DNA lesions outside S-phase. However, H(2)O(2)-induced DSB formation in Rad18-depleted G1 cells was not associated with increased genotoxin sensitivity, indicating that back-up DSB repair mechanisms compensate for Rad18 deficiency. Indeed, in DNA LigIV-deficient cells Rad18-depletion conferred H(2)O(2)-sensitivity, demonstrating functional redundancy between Rad18 and non-homologous end joining for tolerance of oxidative DNA damage acquired during G(1). In contrast with G(1)-synchronized cultures, S-phase cells were H(2)O(2)-sensitive following Rad18-depletion. We conclude that although Rad18 pathway activation by oxidative lesions is not restricted to S-phase, Rad18-mediated trans-lesion synthesis by Polη is dispensable for damage-tolerance in G(1) (because of back-up non-homologous end joining-mediated DSB repair), yet Rad18 is necessary for damage tolerance during S-phase.


Asunto(s)
Ciclo Celular/genética , Reparación del ADN , Proteínas de Unión al ADN/fisiología , Células Cultivadas , Roturas del ADN de Doble Cadena , Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Fase G1/genética , Humanos , Peróxido de Hidrógeno/toxicidad , Oxidación-Reducción , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación A/metabolismo , Fase S/genética , Ubiquitina-Proteína Ligasas , Ubiquitinación
10.
J Mol Cell Cardiol ; 67: 1-11, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24342076

RESUMEN

Clinical application of potent anthracycline anticancer drugs, especially doxorubicin (DOX), is limited by a toxic cardiac side effect that is not fully understood and preventive strategies are yet to be established. Studies in genetically modified mice have demonstrated that focal adhesion kinase (FAK) plays a key role in regulating adaptive responses of the adult myocardium to pathological stimuli through activation of intracellular signaling cascades that facilitate cardiomyocyte growth and survival. The objective of this study was to determine if targeted myocardial FAK activation could protect the heart from DOX-induced de-compensation and to characterize the underlying mechanisms. To this end, mice with myocyte-restricted FAK knock-out (MFKO) or myocyte-specific expression of an active FAK variant (termed SuperFAK) were subjected to DOX treatment. FAK depletion enhanced susceptibility to DOX-induced myocyte apoptosis and cardiac dysfunction, while elevated FAK activity provided remarkable cardioprotection. Our mec6hanistic studies reveal a heretofore unappreciated role for the protective cyclin-dependent kinase inhibitor p21 in the repression of the pro-apoptotic BH3-only protein Bim and the maintenance of mitochondrial integrity and myocyte survival. DOX treatment induced proteasomal degradation of p21, which exacerbated mitochondrial dysfunction and cardiomyocyte apoptosis. FAK was both necessary and sufficient for maintaining p21 levels following DOX treatment and depletion of p21 compromised FAK-dependent protection from DOX. These findings identify p21 as a key determinant of DOX resistance downstream of FAK in cardiomyocytes and indicate that cardiac-restricted enhancement of the FAK/p21 signaling axis might be an effective strategy to preserve myocardial function in patients receiving anthracycline chemotherapy.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Doxorrubicina/antagonistas & inhibidores , Doxorrubicina/toxicidad , Quinasa 1 de Adhesión Focal/metabolismo , Miocitos Cardíacos/patología , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2 , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Miocardio/enzimología , Miocardio/patología , Miocitos Cardíacos/enzimología , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/efectos de los fármacos
11.
NAR Cancer ; 6(2): zcae015, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38596432

RESUMEN

Genome maintenance is an enabling characteristic that allows neoplastic cells to tolerate the inherent stresses of tumorigenesis and evade therapy-induced genotoxicity. Neoplastic cells also deploy many mis-expressed germ cell proteins termed Cancer Testes Antigens (CTAs) to promote genome maintenance and survival. Here, we present the first comprehensive characterization of the DNA Damage Response (DDR) and CTA transcriptional landscapes of endometrial cancer in relation to conventional histological and molecular subtypes. We show endometrial serous carcinoma (ESC), an aggressive endometrial cancer subtype, is defined by gene expression signatures comprising members of the Replication Fork Protection Complex (RFPC) and Fanconi Anemia (FA) pathway and CTAs with mitotic functions. DDR and CTA-based profiling also defines a subset of highly aggressive endometrioid endometrial carcinomas (EEC) with poor clinical outcomes that share similar profiles to ESC yet have distinct characteristics based on conventional histological and genomic features. Using an unbiased CRISPR-based genetic screen and a candidate gene approach, we confirm that DDR and CTA genes that constitute the ESC and related EEC gene signatures are required for proliferation and therapy-resistance of cultured endometrial cancer cells. Our study validates the use of DDR and CTA-based tumor classifiers and reveals new vulnerabilities of aggressive endometrial cancer where none currently exist.

12.
Cell Cycle ; 23(4): 339-352, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38557443

RESUMEN

REV7 is an abundant, multifunctional protein that is a known factor in cell cycle regulation and in several key DNA repair pathways including Trans-Lesion Synthesis (TLS), the Fanconi Anemia (FA) pathway, and DNA Double-Strand Break (DSB) repair pathway choice. Thus far, no direct role has been studied for REV7 in the DNA damage response (DDR) signaling pathway. Here we describe a novel function for REV7 in DSB-induced p53 signaling. We show that REV7 binds directly to p53 to block ATM-dependent p53 Ser15 phosphorylation. We also report that REV7 is involved in the destabilization of p53. These findings affirm REV7's participation in fundamental cell cycle and DNA repair pathways. Furthermore, they highlight REV7 as a critical factor for the integration of multiple processes that determine viability and genome stability.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Daño del ADN , Transducción de Señal , Proteína p53 Supresora de Tumor , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Humanos , Fosforilación , Roturas del ADN de Doble Cadena , Unión Proteica , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Línea Celular Tumoral
13.
bioRxiv ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38979238

RESUMEN

The molecular underpinnings of H igh G rade E ndometrial C arcinoma (HGEC) metastatic growth and survival are poorly understood. Here we show that ascites-derived and primary tumor HGEC cell lines in 3D spheroid culture faithfully recapitulate key features of malignant peritoneal effusion and exhibit fundamentally distinct transcriptomic, proteomic and metabolomic landscapes when compared with conventional 2D monolayers. Using genetic screening platform we identify MAPK14 (which encodes the protein kinase p38α) as a specific requirement for HGEC in spheroid culture. MAPK14 /p38α has broad roles in programing the phosphoproteome, transcriptome and metabolome of HGEC spheroids, yet has negligible impact on monolayer cultures. MAPK14 promotes tumorigenicity in vivo and is specifically required to sustain a sub-population of spheroid cells that is enriched in cancer stemness markers. Therefore, spheroid growth of HGEC activates unique biological programs, including p38α signaling, that cannot be captured using 2D culture models and are highly relevant to malignant disease pathology.

14.
Nat Commun ; 15(1): 1957, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438348

RESUMEN

Almost all Glioblastoma (GBM) are either intrinsically resistant to the chemotherapeutical drug temozolomide (TMZ) or acquire therapy-induced mutations that cause chemoresistance and recurrence. The genome maintenance mechanisms responsible for GBM chemoresistance and hypermutation are unknown. We show that the E3 ubiquitin ligase RAD18 (a proximal regulator of TLS) is activated in a Mismatch repair (MMR)-dependent manner in TMZ-treated GBM cells, promoting post-replicative gap-filling and survival. An unbiased CRISPR screen provides an aerial map of RAD18-interacting DNA damage response (DDR) pathways deployed by GBM to tolerate TMZ genotoxicity. Analysis of mutation signatures from TMZ-treated GBM reveals a role for RAD18 in error-free bypass of O6mG (the most toxic TMZ-induced lesion), and error-prone bypass of other TMZ-induced lesions. Our analyses of recurrent GBM patient samples establishes a correlation between low RAD18 expression and hypermutation. Taken together we define molecular underpinnings for the hallmark tumorigenic phenotypes of TMZ-treated GBM.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Síntesis Translesional de ADN , Reparación de la Incompatibilidad de ADN/genética , Resistencia a Antineoplásicos/genética , Temozolomida/farmacología , Proteínas de Unión al ADN , Ubiquitina-Proteína Ligasas/genética
15.
J Virol ; 86(15): 8097-106, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22623772

RESUMEN

PCNA is monoubiquitinated in response to DNA damage and fork stalling and then initiates recruitment of specialized polymerases in the DNA damage tolerance pathway, translesion synthesis (TLS). Since PCNA is reported to associate with Epstein-Barr virus (EBV) DNA during its replication, we investigated whether the EBV deubiquitinating (DUB) enzyme encoded by BPLF1 targets ubiquitinated PCNA and disrupts TLS. An N-terminal BPLF1 fragment (a BPLF1 construct containing the first 246 amino acids [BPLF1 1-246]) associated with PCNA and attenuated its ubiquitination in response to fork-stalling agents UV and hydroxyurea in cultured cells. Moreover, monoubiquitinated PCNA was deubiquitinated after incubation with purified BPLF1 1-246 in vitro. BPLF1 1-246 dysregulated TLS by reducing recruitment of the specialized repair polymerase polymerase η (Polη) to the detergent-resistant chromatin compartment and virtually abolished localization of Polη to nuclear repair foci, both hallmarks of TLS. Expression of BPLF1 1-246 decreased viability of UV-treated cells and led to cell death, presumably through deubiquitination of PCNA and the inability to repair damaged DNA. Importantly, deubiquitination of PCNA could be detected endogenously in EBV-infected cells in comparison with samples expressing short hairpin RNA (shRNA) against BPLF1. Further, the specificity of the interaction between BPLF1 and PCNA was dependent upon a PCNA-interacting peptide (PIP) domain within the N-terminal region of BPLF1. Both DUB activity and PIP sequence are conserved in the members of the family Herpesviridae. Thus, deubiquitination of PCNA, normally deubiquitinated by cellular USP1, by the viral DUB can disrupt repair of DNA damage by compromising recruitment of TLS polymerase to stalled replication forks. PCNA is the first cellular target identified for BPLF1 and its deubiquitinating activity.


Asunto(s)
Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Infecciones por Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/enzimología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitinación , Proteínas Reguladoras y Accesorias Virales/metabolismo , Proteínas de Arabidopsis , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , ADN Polimerasa Dirigida por ADN/genética , Endopeptidasas/genética , Endopeptidasas/metabolismo , Infecciones por Virus de Epstein-Barr/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Herpesvirus Humano 4/genética , Humanos , Proteínas de Transporte de Membrana , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Estructura Terciaria de Proteína , Proteasas Ubiquitina-Específicas , Rayos Ultravioleta , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/genética
16.
Blood ; 117(19): 5078-87, 2011 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-21355096

RESUMEN

Fanconi anemia (FA) is a rare genetic disorder characterized by bone marrow failure, congenital abnormalities, and an increased risk for cancer and leukemia. Components of the FA-BRCA pathway are thought to function in the repair of DNA interstrand cross-links. Central to this pathway is the monoubiquitylation and chromatin localization of 2 FA proteins, FA complementation group D2 (FANCD2) and FANCI. In the present study, we show that RAD18 binds FANCD2 and is required for efficient monoubiquitylation and chromatin localization of both FANCD2 and FANCI. Human RAD18-knockout cells display increased sensitivity to mitomycin C and a delay in FANCD2 foci formation compared with their wild-type counterparts. In addition, RAD18-knockout cells display a unique lack of FANCD2 and FANCI localization to chromatin in exponentially growing cells. FANCD2 ubiquitylation is normal in cells containing a ubiquitylation-resistant form of proliferating cell nuclear antigen, and chromatin loading of FA core complex proteins appears normal in RAD18-knockout cells. Mutation of the RING domain of RAD18 ablates the interaction with and chromatin loading of FANCD2. These data suggest a key role for the E3 ligase activity of RAD18 in the recruitment of FANCD2 and FANCI to chromatin and the events leading to their ubiquitylation during S phase.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Western Blotting , Línea Celular , Cromatina/metabolismo , Daño del ADN/fisiología , Técnica del Anticuerpo Fluorescente , Técnicas de Inactivación de Genes , Humanos , Inmunoprecipitación , ARN Interferente Pequeño , Fase S/fisiología , Transfección , Ubiquitina-Proteína Ligasas , Ubiquitinación
17.
bioRxiv ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38045328

RESUMEN

Genome maintenance is an enabling characteristic that allows neoplastic cells to tolerate the inherent stresses of tumorigenesis and evade therapy-induced genotoxicity. Neoplastic cells also deploy mis-expressed germ cell proteins termed Cancer Testes Antigens (CTAs) to promote genome maintenance and survival. Here, we present the first comprehensive characterization of the DNA Damage Response (DDR) and CTA transcriptional landscapes of endometrial cancer in relation to conventional histological and molecular subtypes. We show endometrial serous carcinoma (ESC), an aggressive endometrial cancer subtype, is defined by gene expression signatures comprising members of the Replication Fork Protection Complex (RFPC) and Fanconi Anemia (FA) pathway and CTAs with mitotic functions. DDR and CTA- based profiling also defines a subset of highly aggressive endometrioid endometrial carcinomas (EEC) with poor clinical outcomes that share similar profiles to ESC yet have distinct characteristics based on conventional histological and genomic features. Using an unbiased CRISPR-based genetic screen and a candidate gene approach, we confirm that DDR and CTA genes that constitute the ESC and related EEC gene signatures are required for proliferation and therapy-resistance of cultured endometrial cancer cells. Our study validates the use of DDR and CTA-based tumor classifiers and reveals new vulnerabilities of aggressive endometrial cancer where none currently exist.

18.
NAR Cancer ; 5(1): zcad005, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36755961

RESUMEN

DNA damage tolerance and mutagenesis are hallmarks and enabling characteristics of neoplastic cells that drive tumorigenesis and allow cancer cells to resist therapy. The 'Y-family' trans-lesion synthesis (TLS) DNA polymerases enable cells to replicate damaged genomes, thereby conferring DNA damage tolerance. Moreover, Y-family DNA polymerases are inherently error-prone and cause mutations. Therefore, TLS DNA polymerases are potential mediators of important tumorigenic phenotypes. The skin cancer-propensity syndrome xeroderma pigmentosum-variant (XPV) results from defects in the Y-family DNA Polymerase Pol eta (Polη) and compensatory deployment of alternative inappropriate DNA polymerases. However, the extent to which dysregulated TLS contributes to the underlying etiology of other human cancers is unclear. Here we consider the broad impact of TLS polymerases on tumorigenesis and cancer therapy. We survey the ways in which TLS DNA polymerases are pathologically altered in cancer. We summarize evidence that TLS polymerases shape cancer genomes, and review studies implicating dysregulated TLS as a driver of carcinogenesis. Because many cancer treatment regimens comprise DNA-damaging agents, pharmacological inhibition of TLS is an attractive strategy for sensitizing tumors to genotoxic therapies. Therefore, we discuss the pharmacological tractability of the TLS pathway and summarize recent progress on development of TLS inhibitors for therapeutic purposes.

19.
Genes Cancer ; 14: 30-49, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923647

RESUMEN

We and others have recently shown that proteins involved in the DNA damage response (DDR) are critical for KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) cell growth in vitro. However, the CRISPR-Cas9 library that enabled us to identify these key proteins had limited representation of DDR-related genes. To further investigate the DDR in this context, we performed a comprehensive, DDR-focused CRISPR-Cas9 loss-of-function screen. This screen identified valosin-containing protein (VCP) as an essential gene in KRAS-mutant PDAC cell lines. We observed that genetic and pharmacologic inhibition of VCP limited cell growth and induced apoptotic death. Addressing the basis for VCP-dependent growth, we first evaluated the contribution of VCP to the DDR and found that loss of VCP resulted in accumulation of DNA double-strand breaks. We next addressed its role in proteostasis and found that loss of VCP caused accumulation of polyubiquitinated proteins. We also found that loss of VCP increased autophagy. Therefore, we reasoned that inhibiting both VCP and autophagy could be an effective combination. Accordingly, we found that VCP inhibition synergized with the autophagy inhibitor chloroquine. We conclude that concurrent targeting of autophagy can enhance the efficacy of VCP inhibitors in KRAS-mutant PDAC.

20.
Res Sq ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37886584

RESUMEN

Almost all Glioblastoma (GBM) are either intrinsically resistant to the chemotherapeutical drug temozolomide (TMZ) or acquire therapy-induced mutations that cause chemoresistance and recurrence. The genome maintenance mechanisms responsible for GBM chemoresistance and hypermutation are unknown. We show that the E3 ubiquitin ligase RAD18 (a proximal regulator of TLS) is activated in a Mismatch repair (MMR)-dependent manner in TMZ-treated GBM cells, promoting post-replicative gap-filling and survival. An unbiased CRISPR screen provides a new aerial map of RAD18-interacting DNA damage response (DDR) pathways deployed by GBM to tolerate TMZ genotoxicity. Analysis of mutation signatures from TMZ-treated GBM reveals a role for RAD18 in error-free bypass of O6mG (the most toxic TMZ-induced lesion), and error-prone bypass of other TMZ-induced lesions. Our analyses of recurrent GBM patient samples establishes a correlation between low RAD18 expression and hypermutation. Taken together we define novel molecular underpinnings for the hallmark tumorigenic phenotypes of TMZ-treated GBM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA