Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 615(7952): 418-424, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922612

RESUMEN

Chirality is a geometrical property described by continuous mathematical functions1-5. However, in chemical disciplines, chirality is often treated as a binary left or right characteristic of molecules rather than a continuity of chiral shapes. Although they are theoretically possible, a family of stable chemical structures with similar shapes and progressively tuneable chirality is yet unknown. Here we show that nanostructured microparticles with an anisotropic bowtie shape display chirality continuum and can be made with widely tuneable twist angle, pitch, width, thickness and length. The self-limited assembly of the bowties enables high synthetic reproducibility, size monodispersity and computational predictability of their geometries for different assembly conditions6. The bowtie nanoassemblies show several strong circular dichroism peaks originating from absorptive and scattering phenomena. Unlike classical chiral molecules, these particles show a continuum of chirality measures2 that correlate exponentially with the spectral positions of the circular dichroism peaks. Bowtie particles with variable polarization rotation were used to print photonically active metasurfaces with spectrally tuneable positive or negative polarization signatures for light detection and ranging (LIDAR) devices.

2.
ACS Nano ; 17(8): 7431-7442, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37058327

RESUMEN

Nanoscale chirality is an actively growing research field spurred by the giant chiroptical activity, enantioselective biological activity, and asymmetric catalytic activity of chiral nanostructures. Compared to chiral molecules, the handedness of chiral nano- and microstructures can be directly established via electron microscopy, which can be utilized for the automatic analysis of chiral nanostructures and prediction of their properties. However, chirality in complex materials may have multiple geometric forms and scales. Computational identification of chirality from electron microscopy images rather than optical measurements is convenient but is fundamentally challenging, too, because (1) image features differentiating left- and right-handed particles can be ambiguous and (2) three-dimensional structure essential for chirality is 'flattened' into two-dimensional projections. Here, we show that deep learning algorithms can identify twisted bowtie-shaped microparticles with nearly 100% accuracy and classify them as left- and right-handed with as high as 99% accuracy. Importantly, such accuracy was achieved with as few as 30 original electron microscopy images of bowties. Furthermore, after training on bowtie particles with complex nanostructured features, the model can recognize other chiral shapes with different geometries without retraining for their specific chiral geometry with 93% accuracy, indicating the true learning abilities of the employed neural networks. These findings indicate that our algorithm trained on a practically feasible set of experimental data enables automated analysis of microscopy data for the accelerated discovery of chiral particles and their complex systems for multiple applications.

3.
Science ; 368(6491): 642-648, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32273399

RESUMEN

The structural complexity of composite biomaterials and biomineralized particles arises from the hierarchical ordering of inorganic building blocks over multiple scales. Although empirical observations of complex nanoassemblies are abundant, the physicochemical mechanisms leading to their geometrical complexity are still puzzling, especially for nonuniformly sized components. We report the self-assembly of hierarchically organized particles (HOPs) from polydisperse gold thiolate nanoplatelets with cysteine surface ligands. Graph theory methods indicate that these HOPs, which feature twisted spikes and other morphologies, display higher complexity than their biological counterparts. Their intricate organization emerges from competing chirality-dependent assembly restrictions that render assembly pathways primarily dependent on nanoparticle symmetry rather than size. These findings and HOP phase diagrams open a pathway to a large family of colloids with complex architectures and unusual chiroptical and chemical properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA