Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Exp Parasitol ; 262: 108771, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723847

RESUMEN

Toxoplasmosis affects about one-third of the world's population. The disease treatment methods pose several side effects and do not efficiently eliminate the parasite, making the search for new therapeutic approaches necessary. We aimed to assess the anti-Toxoplasma gondii activity of four Copaifera oleoresins (ORs) and two isolated diterpene acids, named ent-kaurenoic and ent-polyalthic acid. We used HeLa cells as an experimental model of toxoplasmosis. Uninfected and infected HeLa cells were submitted to the treatments, and the parasite intracellular proliferation, cytokine levels and ROS production were measured. Also, tachyzoites were pre-treated and the parasite invasion was determined. Finally, an in silico analysis was performed to identify potential parasite targets. Our data show that the non-cytotoxic concentrations of ORs and diterpene acids controlled the invasion and proliferation of T. gondii in HeLa cells, thus highlighting the possible direct action on parasites. In addition, some compounds tested controlled parasite proliferation in an irreversible manner. An additional and non-exclusive mechanism of action involves the modulation of host cell components, by affecting the upregulation of the IL-6. Additionally, molecular docking suggested that ent-polyalthic acid has a high affinity for the active site of the TgCDPK1 protein. Copaifera ORs have great antiparasitic activity against T. gondii, and this effect can be partially explained by the presence of the isolated compounds ent-kaurenoic and ent-polyalthic acid.


Asunto(s)
Diterpenos , Fabaceae , Extractos Vegetales , Toxoplasma , Células HeLa , Humanos , Diterpenos/farmacología , Diterpenos/aislamiento & purificación , Diterpenos/química , Toxoplasma/efectos de los fármacos , Toxoplasma/crecimiento & desarrollo , Fabaceae/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo , Citocinas/metabolismo , Interleucina-6/metabolismo , Simulación del Acoplamiento Molecular
2.
Biomed Chromatogr ; 37(8): e5634, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36977284

RESUMEN

Propolis is a natural product of great economic and pharmacological importance. The flora surrounding the bee communities is a determining factor in the composition of propolis and therefore in its biological and medicinal properties. Brown propolis is one of the most important types of propolis in Brazil, produced in the southeastern region. The ethanolic extract of a brown propolis sample from Minas Gerais state was chemically characterized for the subsequent development of a RP-HPLC method, validated according to the standards of regulatory agencies. The leishmanicidal activity of this extract was assessed. The brown propolis was characterized by the presence of chemical markers reported on green propolis such as ferulic acid, coumaric acid, caffeic acid, cinnamic acid, baccharin, artepillin and drupanin, indicating a probable origin on Baccharis dracunculifolia. The developed method agreed with the parameters established by the validation guidelines, then proved to be reliable for the analysis of this type of propolis. The brown propolis displayed significant activity against Leishmania amazonensis with IC50 values of 1.8 and 2.4 µg/ml against the promastigote and amastigote forms, respectively. The studied propolis exhibited promising evidence for use as a natural source against L. amazonensis.


Asunto(s)
Própolis , Própolis/farmacología , Própolis/química , Brasil , Cromatografía Líquida de Alta Presión , Extractos Vegetales/química , Estándares de Referencia
3.
Mutagenesis ; 36(2): 177-185, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33512444

RESUMEN

The present study aimed to evaluate the effect of the manool diterpene on genomic integrity. For this purpose, we evaluated the influence of manool on genotoxicity induced by mutagens with different mechanisms of action, as well as on colon carcinogenesis. The results showed that manool (0.5 and 1.0 µg/ml) significantly reduced the frequency of micronuclei induced by doxorubicin (DXR) and hydrogen peroxide in V79 cells but did not influence genotoxicity induced by etoposide. Mice receiving manool (1.25 mg/kg) exhibited a significant reduction (79.5%) in DXR-induced chromosomal damage. The higher doses of manool (5.0 and 20 mg/kg) did not influence the genotoxicity induced by DXR. The anticarcinogenic effect of manool (0.3125, 1.25 and 5.0 mg/kg) was also observed against preneoplastic lesions chemically induced in rat colon. A gradual increase in manool doses did not cause a proportional reduction of preneoplastic lesions, thus demonstrating the absence of a dose-response relationship. The analysis of serum biochemical indicators revealed the absence of hepatotoxicity and nephrotoxicity of treatments. To explore the chemopreventive mechanisms of manool via anti-inflammatory pathways, we evaluated its effect on nitric oxide (NO) production and on the expression of the NF-kB gene. At the highest concentration tested (4 µg/ml), manool significantly increased NO production when compared to the negative control. On the other hand, in the prophylactic treatment model, manool (0.5 and 1.0 µg/ml) was able to significantly reduce NO levels produced by macrophages stimulated with lipopolysaccharide. Analysis of NF-kB in hepatic and renal tissues of mice treated with manool and DXR revealed that the mutagen was unable to stimulate expression of the gene. In conclusion, manool possesses antigenotoxic and anticarcinogenic effects and its anti-inflammatory potential might be related, at least in part, to its chemopreventive activity.


Asunto(s)
Anticarcinógenos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Daño del ADN/efectos de los fármacos , Diterpenos/farmacología , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Lesiones Precancerosas/tratamiento farmacológico , Animales , Anticarcinógenos/química , Línea Celular , Neoplasias del Colon/inducido químicamente , Cricetinae , Modelos Animales de Enfermedad , Diterpenos/química , Relación Dosis-Respuesta a Droga , Doxorrubicina/efectos adversos , Etopósido/efectos adversos , Peróxido de Hidrógeno/efectos adversos , Masculino , Ratones , Micronúcleos con Defecto Cromosómico/inducido químicamente , Pruebas de Micronúcleos , Pruebas de Mutagenicidad , Extractos Vegetales/farmacología , Lesiones Precancerosas/inducido químicamente , Ratas , Ratas Wistar , Salvia officinalis/química
4.
Arch Microbiol ; 203(7): 4313-4318, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34110481

RESUMEN

The genus Absidia is widely used in the biotransformation of different classes of natural products. This study evaluates the ability of the Absidia coerulea 3A9 marine derived strain isolated from the ascidian Distaplia stilyfera to perform biotransformations by conducting assays with (-)-cubebin, as substrate. The experiment was optimized using the experimental design proposed by Plackett-Burman for seven factors and eight experiments, to establish the biotransformation conditions that would allow maximum production of biotransformed dibenzylbutyrolactone (-)-hinokinin. An analytical method based on Reverse-Phase-High Performance Liquid Chromatography (RP-HPLC) was developed to quantify the fungal biotransformation product. The factor that influenced the (-)-hinokinin peak area the most positively was the percentage of seawater (%seawater) given that its %relative standard deviation (%RSD) showed a 32.92% deviation from the real value.


Asunto(s)
4-Butirolactona/análogos & derivados , Absidia , Benzodioxoles , Lignanos , 4-Butirolactona/síntesis química , Organismos Acuáticos/metabolismo , Benzodioxoles/síntesis química , Biotransformación , Lignanos/síntesis química , Lignanos/química , Lignanos/metabolismo , Agua de Mar/química
5.
J Sep Sci ; 44(16): 3089-3097, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34169651

RESUMEN

Propolis comprises a complex resinous product composed of plant's parts or exudates, pollen, bee wax, and enzymes. Brazilian brown propolis from Araucaria sp displays several biological activities. Considering the lack of validated analytical methods for its analysis, we are reporting the development of a validated high-performance liquid chromatography with photodiode array detector method to analyze Araucaria brown propolis. The crude propolis were extracted and chromatographed, furnishing six main diterpenes. The isolated standards were used to draw the analytical curves, allowing the studies of selectivity, precision, accuracy, recovery, robustness, the determination of limits of detection and limits of quantification. The mobile phase consisted of 0.1% acetic acid in water and acetonitrile, using an octadecylsilane column, 1 mL/min flow rate and detection at 200 or 241 nm. Relative standard deviation values obtained for intra-day and inter-day precision were lower than 4% for all diterpenes. From the five parameters for robustness, wavelength detection and flow rate were the critical ones. Limits of detection and quantification ranged from 0.808 to 10.359 µg/mL and from 2.448 to 31.392 µg/mL, respectively. The recoveries were between 105.03 and 108.13%, with relative standard deviation values around 5.0%. The developed method is precise, sensitive, and reliable for analyzing Araucaria brown propolis.


Asunto(s)
Araucaria/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Diterpenos/análisis , Própolis/análisis , Abietanos/análisis , Brasil , Ácidos Carboxílicos/análisis , Técnicas de Química Analítica , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados , Tetrahidronaftalenos/análisis
6.
Anaerobe ; 63: 102194, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32205191

RESUMEN

Being aware of the remarkable antimicrobial potential of S. officinalis L., we aimed to evaluate the antimicrobial activity of the S. officinalis dichloromethane crude extract (SOD), dichloromethane-soluble fractions (SODH and SODD), SODD subfractions (SODD1 and SODD2), and pure substances (manool, salvigenin, and viridiflorol) against periodontopathogens. This bioassay-guided study comprises five antimicrobial tests-determination of the Minimum Inhibitory Concentration (MIC), determination of the Minimum Bactericidal Concentration (MBC), determination of the antibiofilm activity, construction of the Time-kill curve (determination of Bactericidal Kinetics), and determination of the Fractional Inhibitory Concentration Index-on six clinical bacterial isolates and three standard bacterial strains involved in periodontal disease. SOD has moderate activity against most of the tested bacteria, whereas SODD1, SODH1, SODH3, and manool afford the lowest results. The Porphyromonas gingivalis (ATTC and clinical isolate) biofilm is considerably resistant to all the samples. In association with chlorhexidine gluconate, only SODH1 exerts additive action against P. gingivalis (clinical isolate). Therefore, SODH1 and manool are promising antibacterial agents and may provide therapeutic solutions for periodontal infections.


Asunto(s)
Periodontitis Agresiva , Antibacterianos/farmacología , Extractos Vegetales/farmacología , Salvia officinalis/metabolismo , Periodontitis Agresiva/tratamiento farmacológico , Periodontitis Agresiva/microbiología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Diterpenos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Boca/microbiología , Porphyromonas gingivalis/efectos de los fármacos
7.
Foodborne Pathog Dis ; 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30230926

RESUMEN

Foodborne diseases (FBDs) are a serious public health concern worldwide. In this scenario, preservatives based on natural products, especially plants, have attracted researchers' attention because they offer potential antimicrobial action as well as reduced health impact. The genus Copaifera spp., which is native of tropical South America and West Africa, contains several species for which pharmacological activities, including antibacterial effects, have been described. On the basis of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), antibiofilm activity (inhibition and eradication), preservative capacity, and Ames test, we evaluated the antibacterial, preservative, and mutagenic potential of Copaifera spp. oleoresins against the causative agents of FBDs. The Copaifera duckei, Copaifera reticulata, Copaifera paupera, and Copaifera pubiflora oleoresins displayed promising MIC/MBC values-from 12.5 to 100 µg/mL-against Staphylococcus aureus (American Type Culture Collection [ATCC] 29213), Listeria monocytogenes (ATCC 15313), and Bacillus cereus (ATCC 14579). C. duckei, C. reticulata, C. paupera, and C. pubiflora oleoresin concentrations ranging from 25 to 200 µg/mL and from 100 to 400 µg/mL inhibited biofilm formation and eradicated biofilms, respectively. The oleoresins did not exert mutagenic effects and had superior food preservative action to sodium benzoate (positive control). In conclusion, Copaifera oleoresins exhibit potential antibacterial activity and are not mutagenic, which makes them a promising source to develop novel natural food preservatives to inhibit foodborne pathogens.

8.
Anaerobe ; 52: 43-49, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29885640

RESUMEN

Diterpenes are an important class of plant metabolites that can be used in the search for new antibacterial agents. ent-Copalic acid (CA), the major diterpene in Copaifera species exudates, displays several pharmacological properties. This study evaluates the CA antibacterial potential against the anaerobic bacteria Peptostreptococcus anaerobius and Actinomyces naeslundii. Antimicrobial assays included time-kill and biofilm inhibition and eradication assays. Time-kill assays conducted for CA concentrations between 6.25 and 12.5 µg/mL evidenced bactericidal activity within 72 h. CA combined with chlorhexidine dihydrochloride (CHD) exhibited bactericidal action against P. anaerobius within 6 h of incubation. As for A. naeslundii, the same combination reduced the number of microorganisms by over 3 log10 at 24 h and exerted a bactericidal effect at 48 h of incubation. CA at 500 and 2000 µg/mL inhibited P. anaerobius and A. naeslundii biofilm formation by at least 50%, respectively. CA at 62.5 and 1.000 µg/mL eradicated 99.9% of pre-formed P. anaerobius and A. naeslundii biofilms, respectively. These results indicated that CA presents in vitro antibacterial activity and is a potential biofilm inhibitory agent. This diterpene may play an important role in the search for novel sources of agents that can act against anaerobic bacteria.


Asunto(s)
Actinomyces/efectos de los fármacos , Biopelículas/efectos de los fármacos , Diterpenos/farmacología , Peptostreptococcus/efectos de los fármacos , Extractos Vegetales/farmacología , Actinomyces/fisiología , Fabaceae/química , Pruebas de Sensibilidad Microbiana , Peptostreptococcus/fisiología
9.
Pharm Biol ; 54(11): 2786-2790, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27159582

RESUMEN

CONTEXT: Solanum lycocarpum A. St.-Hil. (Solanaceae), popularly known as 'fruta-do-lobo' (wolf fruit), 'lobeira' and 'jurubebão', is commonly used by native people of Central Brazil in powder form or as a hydroalcoholic extract for the management of diabetes and obesity and to decrease cholesterol levels. OBJECTIVE: The present study determines the possible cytotoxic, genotoxic and antigenotoxic activities of hydroalcoholic extract of the S. lycocarpum fruits (SL). MATERIALS AND METHODS: The clonogenic efficiency assay was used to determine the cytotoxicity. Three concentrations of SL (16, 32 and 64 µg/mL) were used for the evaluation of its genotoxic and antigenotoxic potential on V79 cells using the micronucleus and comet assays. In the antigenotoxicity assays, the cells were treated simultaneously with SL and the alkylating agent methyl methanesulphonate (MMS, 44 µg/mL for the micronucleus assay and 22 µg/mL for the comet assay) as an inducer of micronuclei and DNA damage. RESULTS: The results showed that SL was cytotoxic at concentrations up to 64 µg/mL. No significant differences in the rate of chromosome or DNA damage were observed between cultures treated with SL and the control group. In addition, the frequencies of micronuclei and DNA damage induced by MMS were significantly reduced after treatment with SL. The damage reduction percentage ranged from 68.1% to 79.2% and 12.1% to 16.5% for micronucleus and comet assays, respectively. DISCUSSION AND CONCLUSION: SL exerted no genotoxic effect and exhibited chemopreventive activity against both genomic and chromosome damage induced by MMS.


Asunto(s)
Extractos Vegetales/farmacología , Solanum , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cricetinae , Cricetulus , Daño del ADN , Metilmetanosulfonato/toxicidad , Pruebas de Micronúcleos , Pruebas de Mutagenicidad , Extractos Vegetales/toxicidad
10.
BMC Complement Altern Med ; 15: 443, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26691920

RESUMEN

BACKGROUND: Natural products display numerous therapeutic properties (e.g., antibacterial activity), providing the population with countless benefits. Therefore, the search for novel biologically active, naturally occurring compounds is extremely important. The present paper describes the antibacterial action of the Copaifera langsdorffii oleoresin and ten compounds isolated from this oleoresin against multiresistant bacteria; it also reports the antiproliferative activity of the Copaifera langsdorffii oleoresin and (-)-copalic acid. METHODS: MICs and MBCs were used to determine the antibacterial activity. Time-kill curve assays provided the time that was necessary for the bacteria to die. The Minimum Inhbitory Concentration of Biofilm (CIMB50) of the compounds that displayed the best results was calculated. Cytotoxicity was measured by using the XTT assay. RESULTS: The diterpene (-)-copalic acid was the most active antibacterial and afforded promising Minimum Inhibitory Concentration (MIC) values for most of the tested strains. Determination of the bactericidal kinetics against some bacteria revealed that the bactericidal effect emerged within six hours of incubation for Streptococcus pneumoniae. Concerning the antibiofilm action of this diterpene, its MICB50 was twofold larger than its CBM against S. capitis and S. pneumoniae. The XTT assay helped to evaluate the cytotoxic effect; results are expressed as IC50. The most pronounced antiproliferative effect arose in tumor cell lines treated with (-)-copalic acid; the lowest IC50 value was found for the human glioblastoma cell line. CONCLUSIONS: The diterpene (-)-copalic acid is a potential lead for the development of new selective antimicrobial agents to treat infections caused by Gram-positive multiresistant microorganisms, in both the sessile and planktonic mode. This diterpene is also a good candidate to develop anticancer drugs.


Asunto(s)
Antibacterianos/farmacología , Proliferación Celular/efectos de los fármacos , Fabaceae/química , Inhibidores de Crecimiento/farmacología , Neoplasias/fisiopatología , Extractos Vegetales/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Biopelículas/efectos de los fármacos , Inhibidores de Crecimiento/química , Inhibidores de Crecimiento/aislamiento & purificación , Humanos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Streptococcus/efectos de los fármacos , Streptococcus/fisiología
11.
Biomed Chromatogr ; 27(3): 280-3, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22847230

RESUMEN

The Copaifera species (Leguminoseae) are popularly known as 'copaíba' or 'copaíva' and are grown in the states of Amazonas, Pará and Ceará in northern Brazil. The oleoresins obtained from these species have been extensively used owing to their pharmacological potential and their application in cosmetic and pharmaceutical preparations. In the present study, the development and validation of a novel, rapid and efficient RP-HPLC methodology for the analysis of the diterpene (-)-copalic acid (CA), pointed out as the only chemical marker of the Copaifera genus, are described. The regression equation (Y = 26,707x - 29,498) was obtained with good linearity (r(2) = 0.9993) and the limits of quantification and detection were 9.182 and 3.032 µg/mL, respectively. The precision and the accuracy of the method were adequate (lower than 4%). Finally, the validation parameters evaluated were satisfactorily met, so the developed method represents a suitable tool for application in the quality control of such natural products. Further studies aiming to develop analytical methodologies for each Copaifera species using a more representative number of chemical markers should be performed.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Diterpenos/análisis , Preparaciones de Plantas/química , Cromatografía de Fase Inversa/métodos , Diterpenos/química , Modelos Lineales , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Antibiotics (Basel) ; 12(7)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37508298

RESUMEN

Polyalthic acid (PA) is a diterpene found in copaiba oil. As a continuation of our work with PA, we synthesized PA analogs and investigated their antibacterial effects on preformed biofilms of Staphylococcus epidermidis and determined the minimal inhibitory concentration (MIC) of the best analogs against planktonic bacterial cells. There was no difference in activity between the amides 2a and 2b and their corresponding amines 3a and 3b regarding their ability to eradicate biofilm. PA analogs 2a and 3a were able to significantly eradicate the preformed biofilm of S. epidermidis and were active against all the Gram-positive bacteria tested (Enterococcus faecalis, Enterococcus faecium, S. epidermidis, Staphylococcus aureus), with different MIC depending on the microorganism. Therefore, PA analogs 2a and 3a are of interest for further in vitro and in vivo testing to develop formulations for antibiotic drugs against Gram-positive bacteria.

13.
Nat Prod Res ; : 1-5, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37915254

RESUMEN

Propolis is a natural product widely used in folk medicine. Among its various applications, its antiparasitic properties stand out. Due to its great biodiversity, Brazil is a major producer of several types of propolis. This study proposes to evaluate the leishmanicidal properties of the hydroalcoholic extract of propolis collected in the southern region of Brazil (Brown propolis - HEBP) and its main isolated compounds: abietic acid (1), 13-epi-cupressic acid (2), 13-epi-torulosol (3), dehydroabietic acid (4), cis-communic acid (5) and ent-agatic acid (6). In general, the diterpenes did not show activity against the promastigotes of Leishmania (Leishmania) amazonensis at the evaluated concentrations. However, the HEBP was very active with an inhibition concentration of 50% at 8.32 µg/mL. Moreover, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) assays showed morphological and structural alterations in promastigote forms of L. (L.) amazonensis when incubated with HEBP.

14.
Front Cell Infect Microbiol ; 13: 1113896, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860986

RESUMEN

The conventional treatment of congenital toxoplasmosis is mainly based on the combination of sulfadiazine and pyrimethamine. However, therapy with these drugs is associated with severe side effects and resistance, requiring the study of new therapeutic strategies. There are currently many studies with natural products, including Copaifera oleoresin, showing actions against some pathogens, as Trypanosoma cruzi and Leishmania. In the present study, we investigated the effects of the leaf hydroalcoholic extract and oleoresin from Copaifera multijuga against Toxoplasma gondii in human villous (BeWo) and extravillous (HTR8/SVneo) trophoblast cells, as well as in human villous explants from third-trimester pregnancy. For this purpose, both cells and villous explants were infected or not with T. gondii, treated with hydroalcoholic extract or oleoresin from C. multijuga and analyzed for toxicity, parasite proliferation, cytokine and ROS production. In parallel, both cells were infected by tachyzoites pretreated with hydroalcoholic extract or oleoresin, and adhesion, invasion and replication of the parasite were observed. Our results showed that the extract and oleoresin did not trigger toxicity in small concentrations and were able to reduce the T. gondii intracellular proliferation in cells previously infected. Also, the hydroalcoholic extract and oleoresin demonstrated an irreversible antiparasitic action in BeWo and HTR8/SVneo cells. Next, adhesion, invasion and replication of T. gondii were dampened when BeWo or HTR8/SVneo cells were infected with pretreated tachyzoites. Finally, infected and treated BeWo cells upregulated IL-6 and downmodulated IL-8, while HTR8/SVneo cells did not change significantly these cytokines when infected and treated. Finally, both the extract and oleoresin reduced the T. gondii proliferation in human explants, and no significant changes were observed in relation to cytokine production. Thus, compounds from C. multijuga presented different antiparasitic activities that were dependent on the experimental model, being the direct action on tachyzoites a common mechanism operating in both cells and villi. Considering all these parameters, the hydroalcoholic extract and oleoresin from C. multijuga can be a target for the establishment of new therapeutic strategy for congenital toxoplasmosis.


Asunto(s)
Fabaceae , Toxoplasmosis Congénita , Embarazo , Humanos , Femenino , Trofoblastos , Placenta , Tercer Trimestre del Embarazo , Extractos Vegetales/farmacología , Antiparasitarios , Citocinas
15.
Mutat Res ; 749(1-2): 87-92, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-22985806

RESUMEN

The pimarane-type diterpene, pimaradienoic acid (PA), is known for its diverse biological properties such as antimicrobial, anti-inflammatory and trypanocidal. A preliminary study was undertaken to investigate in vitro the free radical-scavenging potential of PA. In addition, the genotoxic potential of PA and its ability to modulate genotoxicity induced by doxorubicin (DXR) and methyl methanesulfonate (MMS) were studied in Chinese hamster lung fibroblasts (V79 cells) and in male Swiss mice using the comet and micronucleus assays. The DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) assay showed that PA exerted no antioxidant activity when compared to quercetin. The colony-forming assay using V79 cells showed that PA was cytotoxic at concentrations >5.0µg/mL. Therefore, concentrations of 0.625, 1.25, 2.5, and 5.0µg/mL were used for evaluation of the genotoxic and antigenotoxic potential of PA in V79 cells. For genotoxic and antigenotoxic assessment in Swiss mice, three PA doses were tested (20, 40, and 80mg/kg body weight) based on the solubility limit of the diterpene in dimethylsulfoxide and water. The in vitro results demonstrated that PA induced DNA damage at concentrations of 2.5 and 5.0µg/mL in the comet assay. However, no genotoxic effect was observed in the micronucleus test using V79 cells. In the in vivo evaluation of genotoxicity, a significant increase in the frequency of DNA damage was observed in hepatocytes of animals treated with the highest PA dose (80mg/kg) when compared to the control group, but this difference was not seen in the micronucleus test. Furthermore, PA significantly reduced the frequency of DXR- and MMS-induced micronuclei and extent of DNA damage in in vitro and in vivo test systems.


Asunto(s)
Daño del ADN/efectos de los fármacos , Diterpenos/toxicidad , Mutágenos/toxicidad , Animales , Línea Celular , Ensayo Cometa , Cricetinae , Cricetulus , Diterpenos/administración & dosificación , Diterpenos/química , Doxorrubicina/toxicidad , Fibroblastos/efectos de los fármacos , Masculino , Metilmetanosulfonato/toxicidad , Ratones , Pruebas de Micronúcleos
16.
Toxicol Res (Camb) ; 11(5): 750-757, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36337250

RESUMEN

INTRODUCTION: Red propolis is synthetized from exudates of Dalbergia ecastophyllum (L) Taub. and Symphonia globulifera L.f., presents isoflavones, guttiferone E, xanthochymol, and oblongifolin B and has anti-inflammatory, antioxidant, and antiproliferative activities. OBJECTIVES: This study aimed to evaluate the antigenotoxic and anticarcinogenic potential of red propolis hydroalcoholic extract (RPHE) in rodents. METHODS: The influence of RPHE in doxorubicin (DXR)-induced genotoxicity was investigated through the micronucleus test in Swiss mice. Blood samples were also collected to investigate oxidative stress, hepatotoxicity, and nephrotoxicity. Was investigated the influence of RPHE in 1,2-dimethylhydrazine (DMH)-induced aberrant crypt foci, as well as its influence in proliferating cell nuclear antigen (PCNA) and the cyclooxygenase-2 (COX-2) expression in colon of rats, by immunohistochemistry. RESULTS: The results showed that RPHE (48 mg/kg) reduced DXR-induced genotoxicity. Animals treated with DXR showed significantly lower GSH serum levels in comparison to the negative control. RPHE treatments did not attenuated significantly the DXR-induced GSH depletion. No difference was observed in cytotoxicity parameters of mice hematopoietic tissues between the treatment groups, as well as the biochemical parameters of hepatotoxicity and nephrotoxicity. RPHE (12 mg/kg) reduced the DMH-induced carcinogenicity and toxicity, as well as DMH-induced PCNA and COX-2 expression in colon tissue. CONCLUSION: Therefore, was observed that the RPHE has chemopreventive effect, associated to antiproliferative and anti-inflammatory activities.

17.
Arch Oral Biol ; 143: 105520, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36049430

RESUMEN

OBJECTIVE: This study aimed to evaluate the antibacterial activity of crude Brazilian red propolis (BRP) extract against anaerobic bacteria involved in primary endodontic infection. Additionally, we evaluate the cell viability and free radical production of human dental pulp fibroblasts (HDPF) in direct contact with mineral trioxide aggregate (MTA) and BRP. DESIGN: The Minimum Inhibitory Concentration, Minimum Bactericidal Concentration (MIC, MBC) and Minimum Inhibitory Concentration of Biofilm (MICB50) of BRP against anaerobic endodontic pathogens were determined. HDPF were exposed to BRP10 (10 µg/mL), BRP50 (50 µg/mL), MTA extract (1:1, 1:2, 1:4 e 1:8), dimethyl sulfoxide 0.5% (DMSO), and cell culture medium (DMEM). The groups were tested for cell viability (MTT assay), and free radical production (reactive oxygen species - ROS, DCFH-DA probe and nitric oxide - NO, Griess reagent). The one-way ANOVA and Tukey's tests were employed at a significance level of 5%. RESULTS: MIC/MBC values of BRP performed antibacterial activity for Parvimonas micra (6.25/6.25 µg/mL), Fusobacterium nucleatum (25/25 µg/mL), Prevotella melaninogenica (50/100 µg/mL), Prevotella nigrescens (50/100 µg/mL), Prevotella intermedia (50/100 µg/mL), and Porphyromonas gingivalis (50/200 µg/mL). The MICB50 values ranged from 1.56 to 50 µg/mL. BRP and MTA stimulated cell viability, emphasizing BRP10 (p = 0.007). Furthermore, it was observed that MTA 1:1, MTA 1:2, and BRP50 slightly increased ROS (p < 0.001) and NO production (p = 0.008, p = 0.007, and p < 0.001 respectively) compared to DMEM group. CONCLUSIONS: BRP exhibits good antibacterial activity against endodontic pathogens, and both BRP and MTA promote the viability of HDPF without increasing NO and ROS production.


Asunto(s)
Própolis , Humanos , Antibacterianos/farmacología , Brasil , Dimetilsulfóxido , Pruebas de Sensibilidad Microbiana , Óxido Nítrico , Extractos Vegetales/farmacología , Própolis/farmacología , Especies Reactivas de Oxígeno
18.
Sci Rep ; 12(1): 21165, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36477635

RESUMEN

Bacterial and viral infections are serious public health issue. Therefore, this study aimed to evaluate the antibacterial, antibiofilm and antiviral potential of the Brazilian Red Propolis (BRP) crude hydroalcoholic extract, fractions, and isolated compounds, as well as their in vivo toxicity. The antibacterial activity was evaluated by determining the Minimum Inhibitory Concentration and the antibiofilm activity by determining the Minimum Inhibitory Concentration of Biofilm (MICB50). The viable bacteria count (Log10 UFC/mL) was also obtained. The antiviral assays were performed by infecting BHK-21 cells with Chikungunya (CHIKV) nanoluc. The toxicity of the BRP was evaluated in the Caenorhabditis elegans animal model. The MIC values for the crude hydroalcoholic extract sample ranged from 3.12 to 100 µg/mL, while fractions and isolated compounds the MIC values ranged from 1.56 to 400 µg/mL.The BRP crude hydroalcoholic extract, oblongifolin B, and gutiferone E presented MICB50 values ranging from 1.56 to 100 µg/mL against monospecies and multispecies biofilms. Neovestitol and vestitol inhibited CHIKV infection by 93.5 and 96.7%, respectively. The tests to evaluate toxicity in C. elegans demonstrated that the BRP was not toxic below the concentrations 750 µg/mL. The results constitute an alternative approach for treating various infectious diseases.


Asunto(s)
Própolis , Animales , Própolis/farmacología , Caenorhabditis elegans , Brasil , Extractos Vegetales/farmacología
19.
Planta Med ; 77(13): 1489-94, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21384316

RESUMEN

Solanum lycocarpum A. St. Hil. (Solanaceae) is a hairy shrub or small much-branched tree of the Brazilian Cerrado. S. lycocarpum fruits are commonly used in traditional medicine in powder form or as folk preparations for the treatment of diabetes and obesity, as well as for controlling cholesterol levels. The aim of the present study was to chemically characterize the hydroalcoholic extract (SL) of S. lycocarpum by determination of total flavonoids and total poyphenols and quantification of steroidal alkaloids, as well as to evaluate its mutagenic and/or antimutagenic potential on V79 cells and Swiss mice using chromosomal aberrations and bone marrow micronucleus assays, respectively. Three concentrations of SL (16, 32, and 24 µg/mL) were used for the evaluation of its mutagenic potential in V79 cells and four doses (0.25, 0.50, 1.0, and 2.0 g/kg body weight) were used for Swiss mice. In the antimutagenicity assays, the different concentrations of SL were combined with the chemotherapeutic agent doxorubicin (DXR). HPLC analysis of SL gave contents of 6.57 % ± 0.41 of solasonine and 4.60 % ± 0.40 of solamargine. Total flavonoids and polyphenols contents in SL were 0.04 and 3.60 %, respectively. The results showed that not only SL exerted no mutagenic effect, but it also significantly reduced the frequency of chromosomal aberrations induced by DXR in both V79 cells and micronuclei in Swiss mice at the doses tested.


Asunto(s)
Antimutagênicos/farmacología , Aberraciones Cromosómicas/efectos de los fármacos , Flavonoides/farmacología , Extractos Vegetales/farmacología , Polifenoles/farmacología , Solanum/química , Animales , Antibióticos Antineoplásicos/farmacología , Médula Ósea/efectos de los fármacos , Brasil , Línea Celular , Aberraciones Cromosómicas/inducido químicamente , Cricetinae , Cricetulus , Daño del ADN/efectos de los fármacos , Doxorrubicina/farmacología , Flavonoides/química , Frutas/química , Masculino , Medicina Tradicional , Ratones , Pruebas de Micronúcleos , Extractos Vegetales/química , Polifenoles/química , Alcaloides Solanáceos/análisis , Alcaloides Solanáceos/farmacología , Esteroides/análisis , Esteroides/farmacología
20.
Sci Rep ; 11(1): 4953, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33654123

RESUMEN

Invasion of periodontal tissues by Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans can be associated with aggressive forms of periodontitis. Oleoresins from different copaifera species and their compounds display various pharmacological properties. The present study evaluates the antibacterial and antivirulence activity of oleoresins obtained from different copaifera species and of ten isolated compounds against two causative agents of periodontitis. The following assays were performed: determination of the minimum inhibitory concentration (MIC), determination of the minimum bactericidal concentration (MBC), and determination of the antibiofilm activity by inhibition of biofilm formation and biofilm eradication tests. The antivirulence activity was assessed by hemagglutination, P. gingivalis Arg-X and Lis-X cysteine protease inhibition assay, and A. actinomycetemcomitans leukotoxin inhibition assay. The MIC and MBC of the oleoresins and isolated compounds 1, 2, and 3 ranged from 1.59 to 50 µg/mL against P. gingivalis (ATCC 33277) and clinical isolates and from 6.25 to 400 µg/mL against A. actinomycetemcomitans (ATCC 43717) and clinical isolates. About the antibiofilm activity, the oleoresins and isolated compounds 1, 2, and 3 inhibited biofilm formation by at least 50% and eradicated pre-formed P. gingivalis and A. actinomycetemcomitans biofilms in the monospecies and multispecies modes. A promising activity concerning cysteine protease and leucotoxin inhibition was also evident. In addition, molecular docking analysis was performed. The investigated oleoresins and their compounds may play an important role in the search for novel sources of agents that can act against periodontal pathogens.


Asunto(s)
Aggregatibacter actinomycetemcomitans/fisiología , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Fabaceae/química , Extractos Vegetales/farmacología , Porphyromonas gingivalis/fisiología , Antibacterianos/química , Biopelículas/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Periodontitis/tratamiento farmacológico , Periodontitis/microbiología , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA