Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Res Policy ; 50(1): 104069, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33390628

RESUMEN

Synthesis centers are a form of scientific organization that catalyzes and supports research that integrates diverse theories, methods and data across spatial or temporal scales to increase the generality, parsimony, applicability, or empirical soundness of scientific explanations. Synthesis working groups are a distinctive form of scientific collaboration that produce consequential, high-impact publications. But no one has asked if synthesis working groups synthesize: are their publications substantially more diverse than others, and if so, in what ways and with what effect? We investigate these questions by using Latent Dirichlet Analysis to compare the topical diversity of papers published by synthesis center collaborations with that of papers in a reference corpus. Topical diversity was operationalized and measured in several ways, both to reflect aggregate diversity and to emphasize particular aspects of diversity (such as variety, evenness, and balance). Synthesis center publications have greater topical variety and evenness, but less disparity, than do papers in the reference corpus. The influence of synthesis center origins on aspects of diversity is only partly mediated by the size and heterogeneity of collaborations: when taking into account the numbers of authors, distinct institutions, and references, synthesis center origins retain a significant direct effect on diversity measures. Controlling for the size and heterogeneity of collaborative groups, synthesis center origins and diversity measures significantly influence the visibility of publications, as indicated by citation measures. We conclude by suggesting social processes within collaborations that might account for the observed effects, by inviting further exploration of what this novel textual analysis approach might reveal about interdisciplinary research, and by offering some practical implications of our results.

2.
J Med Ethics ; 43(9): 618-624, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28320774

RESUMEN

In this article, we review the extant social science and ethical literature on three-dimensional (3D) bioprinting. 3D bioprinting has the potential to be a 'game-changer', printing human organs on demand, no longer necessitating the need for living or deceased human donation or animal transplantation. Although the technology is not yet at the level required to bioprint an entire organ, 3D bioprinting may have a variety of other mid-term and short-term benefits that also have positive ethical consequences, for example, creating alternatives to animal testing, filling a therapeutic need for minors and avoiding species boundary crossing. Despite a lack of current socioethical engagement with the consequences of the technology, we outline what we see as some preliminary practical, ethical and regulatory issues that need tackling. These relate to managing public expectations and the continuing reliance on technoscientific solutions to diseases that affect high-income countries. Avoiding prescribing a course of action for the way forward in terms of research agendas, we do briefly outline one possible ethical framework 'Responsible Research Innovation' as an oversight model should 3D bioprinting promises are ever realised. 3D bioprinting has a lot to offer in the course of time should it move beyond a conceptual therapy, but is an area that requires ethical oversight and regulation and debate, in the here and now. The purpose of this article is to begin that discussion.


Asunto(s)
Investigación Biomédica/ética , Bioimpresión/ética , Medicina Regenerativa/ética , Animales , Beneficencia , Ética en Investigación , Humanos , Medicina Regenerativa/métodos
5.
J Tissue Eng ; 12: 20417314211027677, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34377431

RESUMEN

Tissue engineering is an evolving multi-disciplinary field with cutting-edge technologies and innovative scientific perceptions that promise functional regeneration of damaged tissues/organs. Tissue engineered medical products (TEMPs) are biomaterial-cell products or a cell-drug combination which is injected, implanted or topically applied in the course of a therapeutic or diagnostic procedure. Current tissue engineering strategies aim at 3D printing/bioprinting that uses cells and polymers to construct living tissues/organs in a layer-by-layer fashion with high 3D precision. However, unlike conventional drugs or therapeutics, TEMPs and 3D bioprinted tissues are novel therapeutics and need different regulatory protocols for clinical trials and commercialization processes. Therefore, it is essential to understand the complexity of raw materials, cellular components, and manufacturing procedures to establish standards that can help to translate these products from bench to bedside. These complexities are reflected in the regulations and standards that are globally in practice to prevent any compromise or undue risks to patients. This review comprehensively describes the current legislations, standards for TEMPs with a special emphasis on 3D bioprinted tissues. Based on these overviews, challenges in the clinical translation of TEMPs & 3D bioprinted tissues/organs along with their ethical concerns and future perspectives are discussed.

9.
PLoS One ; 8(1): e54284, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23342119

RESUMEN

With the development of the Human Genome Project, a heated debate emerged on biology becoming 'big science'. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international 'Census of Marine Life' (CoML) making an inventory of life in the world's oceans. Discussing various aspects of collaboration--including size, internationalisation, research practice, technological developments, application, and public communication--I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different 'collective ways of knowing'.


Asunto(s)
Disciplinas de las Ciencias Biológicas/métodos , Biología Marina/métodos
10.
Endeavour ; 37(3): 162-71, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23578694

RESUMEN

The history of science shows a shift from single-investigator 'little science' to increasingly large, expensive, multinational, interdisciplinary and interdependent 'big science'. In physics and allied fields this shift has been well documented, but the rise of collaboration in the life sciences and its effect on scientific work and knowledge has received little attention. Research in biology exhibits different historical trajectories and organisation of collaboration in field and laboratory - differences still visible in contemporary collaborations such as the Census of Marine Life and the Human Genome Project. We employ these case studies as strategic exemplars, supplemented with existing research on collaboration in biology, to expose the different motives, organisational forms and social dynamics underpinning contemporary large-scale collaborations in biology and their relations to historical patterns of collaboration in the life sciences. We find the interaction between research subject, research approach as well as research organisation influencing collaboration patterns and the work of scientists.


Asunto(s)
Organismos Acuáticos , Disciplinas de las Ciencias Biológicas/historia , Biología/historia , Censos , Conducta Cooperativa , Proyecto Genoma Humano/historia , Comunicación Interdisciplinaria , Animales , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos
12.
BMC Res Notes ; 4: 283, 2011 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-21835031

RESUMEN

BACKGROUND: In intensive care, weaning is the term used for the process of withdrawal of mechanical ventilation to enable spontaneous breathing to be re-established. Inspiratory muscle weakness and deconditioning are common in patients receiving mechanical ventilation, especially that of prolonged duration. Inspiratory muscle training could limit or reverse these unhelpful sequelae and facilitate more rapid and successful weaning. METHODS: This review will involve systematic searching of five electronic databases to allow the identification of randomised trials of inspiratory muscle training in intubated and ventilated patients. From these trials, we will extract available data for a list of pre-defined outcomes, including maximal inspiratory pressure, the duration of the weaning period, and hospital length of stay. We will also meta-analyse comparable results where possible, and report a summary of the available pool of evidence. DISCUSSION: The data generated by this review will be the most comprehensive answer available to the question of whether inspiratory muscle training is clinically useful in intensive care. As well as informing clinicians in the intensive care setting, it will also inform healthcare managers deciding whether health professionals with skills in respiratory therapy should be made available to provide this sort of intervention. Through the publication of this protocol, readers will ultimately be able to assess whether the review was conducted according to a pre-defined plan. Researchers will be aware that the review is underway, thereby avoid duplication, and be able to use it as a basis for planning similar reviews.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA