Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Tipo de estudio
País de afiliación
Intervalo de año de publicación
1.
Mem Inst Oswaldo Cruz ; 112(8): 561-568, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28767981

RESUMEN

BACKGROUND: Visceral leishmaniasis (VL) caused by Leishmania infantum is characterised by the loss of the ability of the host to generate an effective immune response. Chemokines have a direct involvement in the pathogenesis of leishmaniasis, causing a rapid change in the expression of these molecules during infection by Leishmania. OBJECTIVES: Herein, it was investigated the role of CXCL10 in controlling infection by L. infantum. METHODS: RAW 264.7 macrophages were infected with L. infantum in vitro and treated or not with CXCL10 (25, 50 and 100 ng/mL). Parasite load, as well as nitric oxide (NO), IL-4 and IL-10 production were assessed at 24 and 48 h after infection. In vivo, BALB/c mice were infected and treated or not with CXCL10 (5 µg/kg) at one, three and seven days of infection. Parasite load, IFN-g, IL-4, TGF-ß and IL-10 were evaluated one, seven and 23 days post treatment. FINDINGS: In vitro, CXCL10 reduced parasitic load, not dependent on NO, and inhibited IL-10 and IL-4 secretion. In vivo, CXCL10 was able to reduce the parasite load in both liver and spleen, four weeks after infection, representing a higher decrease in the number of parasites in these organs, also induced IFN-γ at day 23 after treatment, correlating with the decrease in parasite load, and reduced IL-10 and TGF-ß. MAIN CONCLUSIONS: This study suggests a partial protective role of CXCL10 against L. infantum, mediated by IFN-g, not dependent on NO, and with suppression of IL-10 and TGF-ß. These data may provide information for the development of new approaches for future therapeutic interventions for VL.


Asunto(s)
Quimiocina CXCL10/uso terapéutico , Citocinas/inmunología , Leishmania infantum , Leishmaniasis Visceral/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Animales , Interferón gamma/análisis , Interleucina-10/biosíntesis , Interleucina-4/biosíntesis , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Hígado/parasitología , Hígado/patología , Macrófagos/metabolismo , Macrófagos/parasitología , Masculino , Ratones , Ratones Endogámicos BALB C , Óxido Nítrico/biosíntesis , Tamaño de los Órganos , Bazo/metabolismo , Bazo/parasitología , Bazo/patología , Factores de Tiempo , Factor de Crecimiento Transformador beta/análisis
2.
Front Cell Infect Microbiol ; 12: 788196, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463648

RESUMEN

Visceral leishmaniasis (VL) is often associated with hematologic manifestations that may interfere with neutrophil response. Lipophosphoglycan (LPG) is a major molecule on the surface of Leishmania promastigotes, which has been associated with several aspects of the parasite-vector-host interplay. Here, we investigated how LPG from Leishmania (L.) infantum, the principal etiological agent of VL in the New World, influences the initial establishment of infection during interaction with human neutrophils in an experimental setting in vitro. Human neutrophils obtained from peripheral blood samples were infected with either the wild-type L. infantum (WT) strain or LPG-deficient mutant (∆lpg1). In this setting, ∆lpg1 parasites displayed reduced viability compared to WT L. infantum; such finding was reverted in the complemented ∆lpg1+LPG1 parasites at 3- and 6-h post-infection. Confocal microscopy experiments indicated that this decreased survival was related to enhanced lysosomal fusion. In fact, LPG-deficient L. infantum parasites more frequently died inside neutrophil acidic compartments, a phenomenon that was reverted when host cells were treated with Wortmannin. We also observed an increase in the secretion of the neutrophil collagenase matrix metalloproteinase-8 (MMP-8) by cells infected with ∆lpg1 L. infantum compared to those that were infected with WT parasites. Furthermore, collagen I matrix degradation was found to be significantly increased in ∆lpg1 parasite-infected cells but not in WT-infected controls. Flow cytometry analysis revealed a substantial boost in production of reactive oxygen species (ROS) during infection with either WT or ∆lpg1 L. infantum. In addition, killing of ∆lpg1 parasites was shown to be more dependent on the ROS production than that of WT L. infantum. Notably, inhibition of the oxidative stress with Apocynin potentially fueled ∆lpg1 L. infantum fitness as it increased the intracellular parasite viability. Thus, our observations demonstrate that LPG may be a critical molecule fostering parasite survival in human neutrophils through a mechanism that involves cellular activation and generation of free radicals.


Asunto(s)
Leishmania infantum , Leishmaniasis Visceral , Parásitos , Animales , Glicoesfingolípidos/metabolismo , Humanos , Leishmaniasis Visceral/metabolismo , Neutrófilos/metabolismo , Parásitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Front Immunol ; 11: 1488, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765515

RESUMEN

The excessive release of heme during hemolysis contributes to the severity of sickle cell anemia (SCA) by exacerbating hemoglobin S (HbS) autoxidation, inflammation and systemic tissue damage. The present study investigated the effect of hydroxyurea (HU) on free radical neutralization and its stimulation of antioxidant genes in human peripheral blood mononuclear cells (PBMC) and human umbilical vein endothelial cells (HUVEC) in the presence or absence of hemin. HU (100 and 200 µM) significantly reduced the production of intracellular reactive oxygen species (ROS) induced by hemin at 70 µM in HUVEC. HUVECs treated with HU+hemin presented significant increases in nitric oxide (NO) production in culture supernatants. HU alone or in combination with hemin promoted the induction of superoxide dismutase-1 (SOD1) and glutathione disulfide-reductase (GSR) in HUVECs and PBMCs, and glutathione peroxidase (GPX1) in PBMCs. Microarray analysis performed in HUVECs indicated that HU induces increased expression of genes involved in the antioxidant response system: SOD2, GSR, microsomal glutathione S-transferase (MGST1), glutathione S-transferase mu 2 (GSTM2), carbonyl reductase 1 (CBR1) and klotho B (KLB). Significant increases in expression were observed in genes with kinase activity: protein kinase C beta (PRKCB), zeta (PRKCZ) and phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 beta (PIK3C2B). HU also induced a significant increase in expression of the gene p62/sequestosome (p62/SQSTM1) and a significant decrease in the expression of the transcriptional factor BACH1 in HUVECs. Upstream analysis predicted the activation of Jun, miR-155-5p and mir-141-3p. These results suggest that HU directly scavenges free radicals and induces the expression of antioxidant genes via induction of the Nrf2 signaling pathway.


Asunto(s)
Anemia de Células Falciformes/metabolismo , Endotelio Vascular/metabolismo , Hemoglobina Falciforme/metabolismo , Hidroxiurea/metabolismo , Leucocitos Mononucleares/metabolismo , Antioxidantes/metabolismo , Regulación de la Expresión Génica , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Hemina/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Glutatión Peroxidasa GPX1
4.
Mem. Inst. Oswaldo Cruz ; 112(8): 561-568, Aug. 2017. graf
Artículo en Inglés | LILACS | ID: biblio-894865

RESUMEN

BACKGROUND Visceral leishmaniasis (VL) caused by Leishmania infantum is characterised by the loss of the ability of the host to generate an effective immune response. Chemokines have a direct involvement in the pathogenesis of leishmaniasis, causing a rapid change in the expression of these molecules during infection by Leishmania. OBJECTIVES Herein, it was investigated the role of CXCL10 in controlling infection by L. infantum. METHODS RAW 264.7 macrophages were infected with L. infantum in vitro and treated or not with CXCL10 (25, 50 and 100 ng/mL). Parasite load, as well as nitric oxide (NO), IL-4 and IL-10 production were assessed at 24 and 48 h after infection. In vivo, BALB/c mice were infected and treated or not with CXCL10 (5 μg/kg) at one, three and seven days of infection. Parasite load, IFN-g, IL-4, TGF-β and IL-10 were evaluated one, seven and 23 days post treatment. FINDINGS In vitro, CXCL10 reduced parasitic load, not dependent on NO, and inhibited IL-10 and IL-4 secretion. In vivo, CXCL10 was able to reduce the parasite load in both liver and spleen, four weeks after infection, representing a higher decrease in the number of parasites in these organs, also induced IFN-γ at day 23 after treatment, correlating with the decrease in parasite load, and reduced IL-10 and TGF-β. MAIN CONCLUSIONS This study suggests a partial protective role of CXCL10 against L. infantum, mediated by IFN-g, not dependent on NO, and with suppression of IL-10 and TGF-β. These data may provide information for the development of new approaches for future therapeutic interventions for VL.


Asunto(s)
Animales , Masculino , Ratones , Tamaño de los Órganos/fisiología , Interleucina-4/biosíntesis , Interleucina-10/biosíntesis , Leishmania infantum , Quimiocina CXCL10/uso terapéutico , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Leishmaniasis Visceral/tratamiento farmacológico , Hígado/patología , Macrófagos/efectos de los fármacos , Citocinas/inmunología , Interferón gamma/análisis , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA