Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Exp Eye Res ; 235: 109627, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37619829

RESUMEN

The main purpose of this study is to analyze the effects of unilateral optic nerve crush in the gene expression of pro- and anti-inflammatory mediators, and gliosis markers in injured and contralateral retinas. Retinas from intact, unilaterally optic nerve injured or sham-operated C57BL/6J mice were analyzed 1, 3, 9 and 30 days after the surgery (n = 5/group and time point) and the relative expression of TGF-ß1, IL-1ß, TNF-α, Iba1, AQP4, GFAP, MHCII, and TSPO was analyzed in injured and contralateral using qPCR. The results indicated that compared with intact retinas, sham-operated animals showed an early (day 1) upregulation of IL-1ß, TNF-α and TSPO and a late (day 30) upregulation of TNF-α. In sham-contralateral retinas, TNF-α and TSPO mRNA expression were upregulated and day 30 while GFAP, Iba1, AQP4 and MHCII downregulated at day 9. Compared with sham-operated animals, in retinas affected by optic nerve crush GFAP and TSPO upregulated at day 1 and TNF-α, Iba1, AQP4 and MHCII at day 3. In the crushed-contralateral retinas, TGF-ß1, TNF-α, Iba1 and MHCII were upregulated at day 1. TSPO was upregulated up to day 30 whereas TGF-ß1 and Iba1 downregulated after day 9. In conclusion, both sham surgery and optic nerve crush changed the profile of inflammatory and gliosis markers in the injured and contralateral retinas, changes that were more pronounced for optic nerve crush when compared to sham.


Asunto(s)
Traumatismos del Nervio Óptico , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Factor de Crecimiento Transformador beta1/farmacología , Células Ganglionares de la Retina/metabolismo , Gliosis/metabolismo , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/metabolismo , Enfermedades Neuroinflamatorias , Factor de Necrosis Tumoral alfa/metabolismo , Ratones Endogámicos C57BL , Retina/metabolismo , Nervio Óptico/metabolismo , Compresión Nerviosa/métodos
2.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834893

RESUMEN

Retinal organotypic cultures (ROCs) are used as an in vivo surrogate to study retinal ganglion cell (RGC) loss and neuroprotection. In vivo, the gold standard to study RGC degeneration and neuroprotection is optic nerve lesion. We propose here to compare the course of RGC death and glial activation between both models. The left optic nerve of C57BL/6 male mice was crushed, and retinas analyzed from 1 to 9 days after the injury. ROCs were analyzed at the same time points. As a control, intact retinas were used. Retinas were studied anatomically to assess RGC survival, microglial, and macroglial activation. Macroglial and microglial cells showed different morphological activation between models and were activated earlier in ROCs. Furthermore, microglial cell density in the ganglion cell layer was always lower in ROCs than in vivo. RGC loss after axotomy and in vitro followed the same trend up to 5 days. Thereafter, there was an abrupt decrease in viable RGCs in ROCs. However, RGC somas were still immuno-identified by several molecular markers. ROCs are useful for proof-of-concept studies on neuroprotection, but long-term experiments should be carried out in vivo. Importantly, the differential glial activation observed between models and the concomitant death of photoreceptors that occurs in vitro may alter the efficacy of RGC neuroprotective therapies when tested in in vivo models of optic nerve injury.


Asunto(s)
Sistemas Microfisiológicos , Traumatismos del Nervio Óptico , Ratones , Animales , Masculino , Ratones Endogámicos C57BL , Retina/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Células Ganglionares de la Retina/metabolismo , Axotomía , Supervivencia Celular
3.
Exp Eye Res ; 211: 108746, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34450185

RESUMEN

PURPOSE: To develop a model of focal injury by blue light-emitting diode (LED)-induced phototoxicity (LIP) in pigmented mouse retinas and to study the effects on cone, Iba-1+ cells and retinal pigment epithelium (RPE) cell populations after administration of basic fibroblast growth factor (bFGF) and minocycline, alone or combined. METHODS: In anesthetized dark-adapted adult female pigmented C57BL/6 mice, left pupils were dilated and the eye exposed to LIP (500 lux, 45 s). The retina was monitored longitudinally in vivo with SD-OCT for 7 days (d). Ex vivo, the effects of LIP and its protection with bFGF (0.5 µg) administered alone or combined with minocycline (45 mg/kg) were studied in immunolabeled arrestin-cone outer segments (a+OS) and quantified within a predetermined fixed-size circular area (PCA) centered on the lesion in flattened retinas at 1, 3, 5 or 7d. Moreover, Iba-1+ cells and RPE cell morphology were analysed with Iba-1 and ZO-1 antibodies, respectively. RESULTS: LIP caused a focal lesion within the superior-temporal retina with retinal thinning, particularly the outer retinal layers (116.5 ± 2.9 µm to 36.8 ± 6.3 µm at 7d), and with progressive diminution of a+OS within the PCA reaching minimum values at 7d (6218 ± 342 to 3966 ± 311). Administration of bFGF alone (4519 ± 320) or in combination with minocycline (4882 ± 446) had a significant effect on a+OS survival at 7d and Iba-1+ cell activation was attenuated in the groups treated with minocycline. In parallel, the RPE cell integrity was progressively altered after LIP and administration of neuroprotective components had no restorative effect at 7d. CONCLUSIONS: LIP resulted in progressive outer retinal damage affecting the OS cone population and RPE. Administration of bFGF increased a+OS survival but did not prevent RPE deterioration.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/uso terapéutico , Luz/efectos adversos , Traumatismos Experimentales por Radiación/etiología , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Degeneración Retiniana/etiología , Animales , Arrestinas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Inyecciones Intravítreas , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Microscopía Fluorescente , Minociclina/uso terapéutico , Traumatismos Experimentales por Radiación/diagnóstico por imagen , Traumatismos Experimentales por Radiación/prevención & control , Degeneración Retiniana/diagnóstico por imagen , Degeneración Retiniana/prevención & control , Epitelio Pigmentado de la Retina/metabolismo , Tomografía de Coherencia Óptica
4.
Exp Eye Res ; 210: 108694, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34245756

RESUMEN

PURPOSE: To analyze responses of different RGC populations to left intraorbital optic nerve transection (IONT) and intraperitoneal (i.p.) treatment with 7,8-Dihydroxyflavone (DHF), a potent selective TrkB agonist. METHODS: Adult albino Sprague-Dawley rats received, following IONT, daily i.p. injections of vehicle (1%DMSO in 0.9%NaCl) or DHF. Group-1 (n = 58) assessed at 7days (d) the optimal DHF amount (1-25 mg/kg). Group-2, using freshly dissected naïve or treated retinas (n = 28), investigated if DHF treatment was associated with TrkB activation using Western-blotting at 1, 3 or 7d. Group-3 (n = 98) explored persistence of protection and was analyzed at survival intervals from 7 to 60d after IONT. Groups 2-3 received daily i.p. vehicle or DHF (5 mg/kg). Retinal wholemounts were immunolabelled for Brn3a and melanopsin to identify Brn3a+RGCs and m+RGCs, respectively. RESULTS: Optimal neuroprotection was achieved with 5 mg/kg DHF and resulted in TrkB phosphorylation. The percentage of surviving Brn3a+RGCs in vehicle treated rats was 60, 28, 18, 13, 12 or 8% of the original value at 7, 10, 14, 21, 30 or 60d, respectively, while in DHF treated retinas was 94, 70, 64, 17, 10 or 9% at the same time intervals. The percentages of m+RGCs diminished by 7d-13%, and recovered by 14d-38% in vehicle-treated and to 48% in DHF-treated retinas, without further variations. CONCLUSIONS: DHF neuroprotects Brn3a + RGCs and m + RGCs; its protective effects for Brn3a+RGCs are maximal at 7 days but still significant at 21d, whereas for m+RGCs neuroprotection was significant at 14d and permanent.


Asunto(s)
Flavonas/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Receptor trkB/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Axotomía , Western Blotting , Supervivencia Celular/fisiología , Femenino , Inmunohistoquímica , Inyecciones Intraperitoneales , Neuroprotección , Nervio Óptico/fisiopatología , Nervio Óptico/cirugía , Fosforilación , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Opsinas de Bastones/metabolismo , Factor de Transcripción Brn-3A/metabolismo
5.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008772

RESUMEN

We investigate glial cell activation and oxidative stress induced by taurine deficiency secondary to ß-alanine administration and light exposure. Two months old Sprague-Dawley rats were divided into a control group and three experimental groups that were treated with 3% ß-alanine in drinking water (taurine depleted) for two months, light exposed or both. Retinal and external thickness were measured in vivo at baseline and pre-processing with Spectral-Domain Optical Coherence Tomography (SD-OCT). Retinal cryostat cross sections were immunodetected with antibodies against various antigens to investigate microglial and macroglial cell reaction, photoreceptor outer segments, synaptic connections and oxidative stress. Taurine depletion caused a decrease in retinal thickness, shortening of photoreceptor outer segments, microglial cell activation, oxidative stress in the outer and inner nuclear layers and the ganglion cell layer and synaptic loss. These events were also observed in light exposed animals, which in addition showed photoreceptor death and macroglial cell reactivity. Light exposure under taurine depletion further increased glial cell reaction and oxidative stress. Finally, the retinal pigment epithelial cells were Fluorogold labeled and whole mounted, and we document that taurine depletion impairs their phagocytic capacity. We conclude that taurine depletion causes cell damage to various retinal layers including retinal pigment epithelial cells, photoreceptors and retinal ganglion cells, and increases the susceptibility of the photoreceptor outer segments to light damage. Thus, beta-alanine supplements should be used with caution.


Asunto(s)
Luz , Neuroglía/patología , Neuroglía/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Degeneración Retiniana/patología , Taurina/metabolismo , Animales , Recuento de Células , Supervivencia Celular , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Microglía/patología , Neuroglía/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Ratas Sprague-Dawley , Degeneración Retiniana/sangre , Degeneración Retiniana/diagnóstico por imagen , Epitelio Pigmentado de la Retina/diagnóstico por imagen , Epitelio Pigmentado de la Retina/patología , Sinapsis/metabolismo , Taurina/sangre , Tomografía de Coherencia Óptica , beta-Alanina
6.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34639236

RESUMEN

We analyze the 7,8-dihydroxyflavone (DHF)/TrkB signaling activation of two main intracellular pathways, mitogen-activated protein kinase (MAPK)/ERK and phosphatidylinositol 3 kinase (PI3K)/AKT, in the neuroprotection of axotomized retinal ganglion cells (RGCs). METHODS: Adult albino Sprague-Dawley rats received left intraorbital optic nerve transection (IONT) and were divided in two groups. One group received daily intraperitoneal DHF (5 mg/kg) and another vehicle (1%DMSO in 0.9%NaCl) from one day before IONT until processing. Additional intact rats were employed as control (n = 4). At 1, 3 or 7 days (d) after IONT, phosphorylated (p)AKT, p-MAPK, and non-phosphorylated AKT and MAPK expression levels were analyzed in the retina by Western blotting (n = 4/group). Radial sections were also immunodetected for the above-mentioned proteins, and for Brn3a and vimentin to identify RGCs and Müller cells (MCs), respectively (n = 3/group). RESULTS: IONT induced increased levels of p-MAPK and MAPK at 3d in DHF- or vehicle-treated retinas and at 7d in DHF-treated retinas. IONT induced a fast decrease in AKT in retinas treated with DHF or vehicle, with higher levels of phosphorylation in DHF-treated retinas at 7d. In intact retinas and vehicle-treated groups, no p-MAPK or MAPK expression in RGCs was observed. In DHF- treated retinas p-MAPK and MAPK were expressed in the ganglion cell layer and in the RGC nuclei 3 and 7d after IONT. AKT was observed in intact and axotomized RGCs, but the signal intensity of p-AKT was stronger in DHF-treated retinas. Finally, MCs expressed higher quantities of both MAPK and AKT at 3d in both DHF- and vehicle-treated retinas, and at 7d the phosphorylation of p-MAPK was higher in DHF-treated groups. CONCLUSIONS: Phosphorylation and increased levels of AKT and MAPK through MCs and RGCs in retinas after DHF-treatment may be responsible for the increased and long-lasting RGC protection afforded by DHF after IONT.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Flavonas/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fármacos Neuroprotectores/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Axotomía , Quinasas MAP Reguladas por Señal Extracelular/genética , Femenino , Regulación de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/genética , Fosfatidilinositol 3-Quinasas/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/metabolismo
7.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34769247

RESUMEN

To analyze the neuroprotective effects of 7,8-Dihydroxyflavone (DHF) in vivo and ex vivo, adult albino Sprague-Dawley rats were given a left intraorbital optic nerve transection (IONT) and were divided in two groups: One was treated daily with intraperitoneal (ip) DHF (5 mg/kg) (n = 24) and the other (n = 18) received ip vehicle (1% DMSO in 0.9% NaCl) from one day before IONT until processing. At 5, 7, 10, 12, 14, and 21 days (d) after IONT, full field electroretinograms (ERG) were recorded from both experimental and one additional naïve-control group (n = 6). Treated rats were analyzed 7 (n = 14), 14 (n = 14) or 21 d (n = 14) after IONT, and the retinas immune stained against Brn3a, Osteopontin (OPN) and the T-box transcription factor T-brain 2 (Tbr2) to identify surviving retinal ganglion cells (RGCs) (Brn3a+), α-like (OPN+), α-OFF like (OPN+Brn3a+) or M4-like/α-ON sustained RGCs (OPN+Tbr+). Naïve and right treated retinas showed normal ERG recordings. Left vehicle-treated retinas showed decreased amplitudes of the scotopic threshold response (pSTR) (as early as 5 d), the rod b-wave, the mixed response and the cone response (as early as 10 d), which did not recover with time. In these retinas, by day 7 the total numbers of Brn3a+RGCs, OPN+RGCs and OPN+Tbr2+RGCs decreased to less than one half and OPN+Brn3a+RGCs decreased to approximately 0.5%, and Brn3a+RGCs showed a progressive loss with time, while OPN+RGCs and OPN+Tbr2+RGCs did not diminish after seven days. Compared to vehicle-treated, the left DHF-treated retinas showed significantly greater amplitudes of the pSTR, normal b-wave values and significantly greater numbers of OPN+RGCs and OPN+Tbr2+RGCs for up to 14 d and of Brn3a+RGCs for up to 21 days. DHF affords significant rescue of Brn3a+RGCs, OPN+RGCs and OPN+Tbr2+RGCs, but not OPN+Brn3a+RGCs, and preserves functional ERG responses after IONT.


Asunto(s)
Flavonas/farmacología , Fármacos Neuroprotectores/farmacología , Traumatismos del Nervio Óptico , Nervio Óptico , Células Ganglionares de la Retina , Animales , Electrorretinografía , Femenino , Nervio Óptico/metabolismo , Nervio Óptico/patología , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología
8.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34575905

RESUMEN

BACKGROUND: In adult rats we study the short- and long-term effects of focal blue light-emitting diode (LED)-induced phototoxicity (LIP) on retinal thickness and Iba-1+ activation. METHODS: The left eyes of previously dark-adapted Sprague Dawley (SD) rats were photoexposed to a blue LED (20 s, 200 lux). In vivo longitudinal monitoring of retinal thickness, fundus images, and optical retinal sections was performed from 1 to 30 days (d) after LIP with SD-OCT. Ex vivo, we analysed the population of S-cone and Iba-1+ cells within a predetermined fixed-size circular area (PCA) centred on the lesion. RESULTS: LIP resulted in a circular focal lesion readily identifiable in vivo by fundus examination, which showed within the PCAs a progressive thinning of the outer retinal layer, and a diminution of the S-cone population to 19% by 30 d. In parallel to S-cone loss, activated Iba-1+ cells delineated the lesioned area and acquired an ameboid morphology with peak expression at 3 d after LIP. Iba-1+ cells adopted a more relaxed-branched morphology at 7 d and by 14-30 d their morphology was fully branched. CONCLUSION: LIP caused a progressive reduction of the outer retina with loss of S cones and a parallel dynamic activation of microglial cells in the lesioned area.


Asunto(s)
Luz , Retina/patología , Retina/efectos de la radiación , Animales , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Técnica del Anticuerpo Fluorescente , Microglía/metabolismo , Microglía/patología , Microglía/efectos de la radiación , Ratas , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Degeneración Retiniana/diagnóstico por imagen , Degeneración Retiniana/etiología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Factores de Tiempo , Tomografía de Coherencia Óptica
9.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34445225

RESUMEN

BACKGROUND: To analyze the course of microglial and macroglial activation in injured and contralateral retinas after unilateral optic nerve crush (ONC). METHODS: The left optic nerve of adult pigmented C57Bl/6 female mice was intraorbitally crushed and injured, and contralateral retinas were analyzed from 1 to 45 days post-lesion (dpl) in cross-sections and flat mounts. As controls, intact retinas were studied. Iba1+ microglial cells (MCs), activated phagocytic CD68+MCs and M2 CD206+MCs were quantified. Macroglial cell changes were analyzed by GFAP and vimentin signal intensity. RESULTS: After ONC, MC density increased significantly from 5 to 21 dpl in the inner layers of injured retinas, remaining within intact values in the contralateral ones. However, in both retinas there was a significant and long-lasting increase of CD68+MCs. Constitutive CD206+MCs were rare and mostly found in the ciliary body and around the optic-nerve head. While in the injured retinas their number increased in the retina and ciliary body, in the contralateral retinas decreased. Astrocytes and Müller cells transiently hypertrophied in the injured retinas and to a lesser extent in the contralateral ones. CONCLUSIONS: Unilateral ONC triggers a bilateral and persistent activation of MCs and an opposed response of M2 MCs between both retinas. Macroglial hypertrophy is transient.


Asunto(s)
Axones/metabolismo , Axotomía , Microglía/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Axones/patología , Femenino , Ratones , Microglía/patología , Traumatismos del Nervio Óptico/patología , Células Ganglionares de la Retina/patología
10.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35008441

RESUMEN

Ly6c is an antigen commonly used to differentiate between classical and non-classical monocytes/macrophages. Here we show its potential as a marker of the mouse vasculature, particularly of the retinal vascular plexuses. Ly6c was immunodetected in several tissues of C57BL/6 mice using isolectin IB4 as the control of vasculature staining. In the retina, Ly6c expression was analyzed qualitatively and quantitatively in intact, ischemic, and contralateral retinas from 0 to 30 days after the insult. Ly6c expression was observed in all organs and tissues tested, with a brighter signal and more homogeneous staining than the IB4. In the retinas, Ly6c was well expressed, allowing a detailed study of their anatomy. The three retinal plexuses were morphologically different, and from the superficial to the deep one occupied 15 ± 2, 24 ± 7, and 38 ± 1.4 percent of the retinal surface, respectively. In the injured retinas, there was extravasation of the classically activated monocyte/macrophages (Ly6chigh) and the formation of new vessels in the superficial plexus, increasing the area occupied by it to 25 ± 1%. In the contralateral retinas, the superficial plexus area decreased gradually, reaching significance at 30 days, and Ly6c expression progressively disappeared in the intermediate and deep plexuses. Although the role of Ly6c in vascular endothelial cell function is still not completely understood, we demonstrate here that Ly6c can be used as a new specific marker of the mouse vasculature and to assess, qualitatively and quantitatively, vascular changes in health and disease.


Asunto(s)
Antígenos Ly/metabolismo , Biomarcadores/metabolismo , Isquemia/patología , Vasos Retinianos/patología , Animales , Modelos Animales de Enfermedad , Isquemia/metabolismo , Ratones , Ratones Endogámicos C57BL , Investigación Cualitativa , Vasos Retinianos/metabolismo , Regulación hacia Arriba
11.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669765

RESUMEN

Signaling mediated by cytokines and chemokines is involved in glaucoma-associated neuroinflammation and in the damage of retinal ganglion cells (RGCs). Using multiplexed immunoassay and immunohistochemical techniques in a glaucoma mouse model at different time points after ocular hypertension (OHT), we analyzed (i) the expression of pro-inflammatory cytokines, anti-inflammatory cytokines, BDNF, VEGF, and fractalkine; and (ii) the number of Brn3a+ RGCs. In OHT eyes, there was an upregulation of (i) IFN-γ at days 3, 5, and 15; (ii) IL-4 at days 1, 3, 5, and 7 and IL-10 at days 3 and 5 (coinciding with downregulation of IL1-ß at days 1, 5, and 7); (iii) IL-6 at days 1, 3, and 5; (iv) fractalkine and VEGF at day 1; and (v) BDNF at days 1, 3, 7, and 15. In contralateral eyes, there were (i) an upregulation of IL-1ß at days 1 and 3 and a downregulation at day 7, coinciding with the downregulation of IL4 at days 3 and 5 and the upregulation at day 7; (ii) an upregulation of IL-6 at days 1, 5, and 7 and a downregulation at 15 days; (iii) an upregulation of IL-10 at days 3 and 7; and (iv) an upregulation of IL-17 at day 15. In OHT eyes, there was a reduction in the Brn3a+ RGCs number at days 3, 5, 7, and 15. OHT changes cytokine levels in both OHT and contralateral eyes at different time points after OHT induction, confirming the immune system involvement in glaucomatous neurodegeneration.


Asunto(s)
Encéfalo/patología , Glaucoma/patología , Inflamación/patología , Neuronas/patología , Células Ganglionares de la Retina/patología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Glaucoma/fisiopatología , Mediadores de Inflamación/metabolismo , Presión Intraocular , Masculino , Ratones , Microglía/patología , Hipertensión Ocular/metabolismo , Hipertensión Ocular/fisiopatología , Factores de Tiempo
12.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008136

RESUMEN

Inherited photoreceptor degenerations are not treatable diseases and a frequent cause of blindness in working ages. In this study we investigate the safety, integration and possible rescue effects of intravitreal and subretinal transplantation of adult human bone-marrow-derived mononuclear stem cells (hBM-MSCs) in two animal models of inherited photoreceptor degeneration, the P23H-1 and the Royal College of Surgeons (RCS) rat. Immunosuppression was started one day before the injection and continued through the study. The hBM-MSCs were injected in the left eyes and the animals were processed 7, 15, 30 or 60 days later. The retinas were cross-sectioned, and L- and S- cones, microglia, astrocytes and Müller cells were immunodetected. Transplantations had no local adverse effects and the CD45+ cells remained for up to 15 days forming clusters in the vitreous and/or a 2-3-cells-thick layer in the subretinal space after intravitreal or subretinal injections, respectively. We did not observe increased photoreceptor survival nor decreased microglial cell numbers in the injected left eyes. However, the injected eyes showed decreased GFAP immunoreactivity. We conclude that intravitreal or subretinal injection of hBM-MSCs in dystrophic P23H-1 and RCS rats causes a decrease in retinal gliosis but does not have photoreceptor neuroprotective effects, at least in the short term. However, this treatment may have a potential therapeutic effect that merits further investigation.


Asunto(s)
Gliosis/cirugía , Trasplante de Células Madre Mesenquimatosas , Retina/cirugía , Células Fotorreceptoras Retinianas Conos/trasplante , Degeneración Retiniana/cirugía , Células Madre Adultas/trasplante , Animales , Células de la Médula Ósea/citología , Trasplante de Médula Ósea , Supervivencia Celular/fisiología , Modelos Animales de Enfermedad , Gliosis/patología , Humanos , Ratas , Retina/patología , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/patología
13.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008127

RESUMEN

Here, we evaluated the effects of PEDF (pigment epithelium-derived factor) and PEDF peptides on cone-photoreceptor cell damage in a mouse model of focal LED-induced phototoxicity (LIP) in vivo. Swiss mice were dark-adapted overnight, anesthetized, and their left eyes were exposed to a blue LED placed over the cornea. Immediately after, intravitreal injection of PEDF, PEDF-peptide fragments 17-mer, 17-mer[H105A] or 17-mer[R99A] (all at 10 pmol) were administered into the left eye of each animal. BDNF (92 pmol) and bFGF (27 pmol) injections were positive controls, and vehicle negative control. After 7 days, LIP resulted in a consistent circular lesion located in the supratemporal quadrant and the number of S-cones were counted within an area centered on the lesion. Retinas treated with effectors had significantly greater S-cone numbers (PEDF (60%), 17-mer (56%), 17-mer [H105A] (57%), BDNF (64%) or bFGF (60%)) relative to their corresponding vehicle groups (≈42%). The 17-mer[R99A] with no PEDF receptor binding and no neurotrophic activity, PEDF combined with a molar excess of the PEDF receptor blocker P1 peptide, or with a PEDF-R enzymatic inhibitor had undetectable effects in S-cone survival. The findings demonstrated that the cone survival effects were mediated via interactions between the 17-mer region of the PEDF molecule and its PEDF-R receptor.


Asunto(s)
Proteínas del Ojo/farmacología , Factores de Crecimiento Nervioso/farmacología , Péptidos/farmacología , Retina/efectos de los fármacos , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Serpinas/farmacología , Animales , Córnea/efectos de los fármacos , Córnea/crecimiento & desarrollo , Córnea/metabolismo , Dermatitis Fototóxica , Modelos Animales de Enfermedad , Proteínas del Ojo/metabolismo , Humanos , Ratones , Factores de Crecimiento Nervioso/metabolismo , Fragmentos de Péptidos/farmacología , Péptidos/genética , Fotoperiodo , Receptores de Neuropéptido/genética , Retina/crecimiento & desarrollo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Serpinas/metabolismo
14.
Exp Eye Res ; 182: 156-159, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30940447

RESUMEN

Optic nerve axotomy in rodents allows detailed studies of the effect of different treatments on the survival of central nervous system neurons, the retinal ganglion cells (RGCs). Here we have analyzed the neuroprotective effect of topical bromfenac treatment, a nonsteroidal anti-inflammatory drug (NSAID) used in clinic to ameliorate post-operative inflammation, on axotomized rat RGCs. The left optic nerve of adult rats was subjected to optic nerve crush (ONC). Half of the rats were treated with a topical instillation of saline. On the other half, immediately after the surgery, 2 drops of bromfenac (0.09% Yellox; Bausch & Lomb) were instilled, and then every 12 h until analysis. Retinas in both groups were dissected 3, 5, 7, 9 and 14 days after ONC (n = 4-8/time point/group). Toxicity of bromfenac was assessed in intact retinas treated during 14 days (n = 6). Intact untreated retinas were used as control of the RGC population. RGCs were identified by Brn3a immunodetection and automatically quantified. Our results show that bromfenac does not cause RGC loss in intact retinas. In the injured groups, the number of RGCs at 7, 9 and 14 days after the lesion was significantly higher in treated vs. untreated retinas. To our knowledge this is the first report showing that a topical treatment with a NSAIDs delays axotomy-induced RGC loss and indicates that treatment with NSAIDs could be used as conjunctive therapy in diseases that proceed with optic nerve damage.


Asunto(s)
Benzofenonas/administración & dosificación , Bromobencenos/administración & dosificación , Traumatismos del Nervio Óptico/tratamiento farmacológico , Nervio Óptico/patología , Células Ganglionares de la Retina/efectos de los fármacos , Administración Tópica , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Axotomía , Recuento de Células , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Traumatismos del Nervio Óptico/patología , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/patología
15.
Exp Eye Res ; 188: 107781, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31473259

RESUMEN

To study the effect of taurine depletion induced by ß-alanine supplementation in the retinal nerve fiber layer (RNFL), and retinal ganglion cell (RGC) survival and axonal transport. Albino Sprague-Dawley rats were divided into two groups: one group received ß-alanine supplementation (3%) in the drinking water during 2 months to induce taurine depletion, and the other group received regular water. After one month, half of the rats from each group were exposed to light. Retinas were analyzed in-vivo using Spectral-Domain Optical Coherence Tomography (SD-OCT). Prior to processing, RGCs were retrogradely traced with fluorogold (FG) applied to both superior colliculi, to assess the state of their retrograde axonal transport. Retinas were dissected as wholemounts, surviving RGCs were immunoidentified with Brn3a, and the RNFL with phosphorylated high-molecular-weight subunit of the neurofilament triplet (pNFH) antibodies. ß-alanine supplementation decreases significantly taurine plasma levels and causes a significant reduction of the RNFL thickness that is increased after light exposure. An abnormal pNFH immunoreactivity in some RGC bodies, their proximal dendrites and axons, and a further diminution of the mean number of FG-traced RGCs compared with Brn3a+RGCs, indicate that their retrograde axonal transport is affected. In conclusion, taurine depletion causes RGC loss and axonal transport impairment. Finally, our results suggest that care should be taken when ingesting ß-alanine supplements due to the limited understanding of their potential adverse effects.


Asunto(s)
Transporte Axonal/efectos de los fármacos , Luz/efectos adversos , Fibras Nerviosas/efectos de los fármacos , Degeneración Retiniana/etiología , Células Ganglionares de la Retina/efectos de los fármacos , Taurina/deficiencia , beta-Alanina/toxicidad , Animales , Fibras Nerviosas/metabolismo , Fibras Nerviosas/patología , Proteínas de Neurofilamentos/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Taurina/sangre , Tomografía de Coherencia Óptica , Factor de Transcripción Brn-3A/metabolismo
16.
Int J Mol Sci ; 20(13)2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31261700

RESUMEN

Melanopsin-containing retinal ganglion cells (mRGCs) represent a third class of retinal photoreceptors involved in regulating the pupillary light reflex and circadian photoentrainment, among other things. The functional integrity of the circadian system and melanopsin cells is an essential component of well-being and health, being both impaired in aging and disease. Here we review evidence of melanopsin-expressing cell alterations in aging and neurodegenerative diseases and their correlation with the development of circadian rhythm disorders. In healthy humans, the average density of melanopsin-positive cells falls after age 70, accompanied by age-dependent atrophy of dendritic arborization. In addition to aging, inner and outer retinal diseases also involve progressive deterioration and loss of mRGCs that positively correlates with progressive alterations in circadian rhythms. Among others, mRGC number and plexus complexity are impaired in Parkinson's disease patients; changes that may explain sleep and circadian rhythm disorders in this pathology. The key role of mRGCs in circadian photoentrainment and their loss in age and disease endorse the importance of eye care, even if vision is lost, to preserve melanopsin ganglion cells and their essential functions in the maintenance of an adequate quality of life.


Asunto(s)
Envejecimiento/patología , Ritmo Circadiano , Enfermedades Neurodegenerativas/etiología , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/metabolismo , Envejecimiento/metabolismo , Animales , Humanos , Células Ganglionares de la Retina/patología
17.
Int J Mol Sci ; 20(18)2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31546829

RESUMEN

Inherited or acquired photoreceptor degenerations, one of the leading causes of irreversible blindness in the world, are a group of retinal disorders that initially affect rods and cones, situated in the outer retina. For many years it was assumed that these diseases did not spread to the inner retina. However, it is now known that photoreceptor loss leads to an unavoidable chain of events that cause neurovascular changes in the retina including migration of retinal pigment epithelium cells, formation of "subretinal vascular complexes", vessel displacement, retinal ganglion cell (RGC) axonal strangulation by retinal vessels, axonal transport alteration and, ultimately, RGC death. These events are common to all photoreceptor degenerations regardless of the initial trigger and thus threaten the outcome of photoreceptor substitution as a therapeutic approach, because with a degenerating inner retina, the photoreceptor signal will not reach the brain. In conclusion, therapies should be applied early in the course of photoreceptor degeneration, before the remodeling process reaches the inner retina.


Asunto(s)
Células Fotorreceptoras de Vertebrados/metabolismo , Degeneración Retiniana/metabolismo , Células Ganglionares de la Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Vasos Retinianos/metabolismo , Animales , Transporte Axonal , Muerte Celular , Humanos , Células Fotorreceptoras de Vertebrados/patología , Degeneración Retiniana/patología , Células Ganglionares de la Retina/patología , Epitelio Pigmentado de la Retina/patología , Vasos Retinianos/patología
18.
Int J Mol Sci ; 20(22)2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31731684

RESUMEN

For years it has been known that unilateral optic nerve lesions induce a bilateral response that causes an inflammatory and microglial response in the contralateral un-injured retinas. Whether this contralateral response involves retinal ganglion cell (RGC) loss is still unknown. We have analyzed the population of RGCs and the expression of several genes in both retinas of pigmented mice after a unilateral axotomy performed close to the optic nerve head (0.5 mm), or the furthest away that the optic nerve can be accessed intraorbitally in mice (2 mm). In both retinas, RGC-specific genes were down-regulated, whereas caspase 3 was up-regulated. In the contralateral retinas, there was a significant loss of 15% of RGCs that did not progress further and that occurred earlier when the axotomy was performed at 2 mm, that is, closer to the contralateral retina. Finally, the systemic treatment with minocycline, a tetracycline antibiotic that selectively inhibits microglial cells, or with meloxicam, a non-steroidal anti-inflammatory drug, rescued RGCs in the contralateral but not in the injured retina. In conclusion, a unilateral optic nerve axotomy triggers a bilateral response that kills RGCs in the un-injured retina, a death that is controlled by anti-inflammatory and anti-microglial treatments. Thus, contralateral retinas should not be used as controls.


Asunto(s)
Axotomía , Traumatismos del Nervio Óptico/cirugía , Retina/cirugía , Animales , Masculino , Meloxicam/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/fisiología , Minociclina/uso terapéutico , Nervio Óptico/fisiología , Traumatismos del Nervio Óptico/tratamiento farmacológico , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/efectos de los fármacos , Células Ganglionares de la Retina/efectos de los fármacos
19.
Int J Mol Sci ; 20(13)2019 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-31261943

RESUMEN

BACKGROUND: To induce a moderate chronic ocular hypertension (OHT) by injecting polidocanol, a foamed sclerosant drug, in the aqueous humor outflow pathway. METHODS: Intraocular pressure (IOP) was monitored for up to 6 months. Pattern and full-field electroretinogram (PERG and ERG) were recorded and retinal ganglion cells (RGC) and retinal nerve fiber layer (RNFL) thickness were assessed in vivo with optical coherence tomography (OCT) and ex vivo using Brn3a immunohistochemistry. RESULTS: In the first 3 weeks post-injection, a significant IOP elevation was observed in the treated eyes (18.47 ± 3.36 mmHg) when compared with the control fellow eyes (12.52 ± 2.84 mmHg) (p < 0.05). At 8 weeks, 65% (11/17) of intervention eyes had developed an IOP increase >25% over the baseline. PERG responses were seen to be significantly reduced in the hypertensive eyes (2.25 ± 0.24 µV) compared to control eyes (1.44 ± 0.19 µV) (p < 0.01) at week 3, whereas the ERG components (photoreceptor a-wave and bipolar cell b-wave) remained unaltered. By week 24, RNFL thinning and cell loss in the ganglion cell layer was first detected (2/13, 15.3%) as assessed by OCT and light microscopy. CONCLUSIONS: This novel OHT rat model, with moderate levels of chronically elevated IOP, and abnormal PERG shows selective functional impairment of RGC.


Asunto(s)
Modelos Animales de Enfermedad , Glaucoma/etiología , Polidocanol/toxicidad , Soluciones Esclerosantes/toxicidad , Animales , Glaucoma/metabolismo , Glaucoma/patología , Inyecciones Intraoculares , Presión Intraocular , Masculino , Ratas , Ratas Wistar , Factor de Transcripción Brn-3A/metabolismo
20.
Int J Mol Sci ; 20(12)2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31226772

RESUMEN

We studied short- and long-term effects of intravitreal injection of N-methyl-d-aspartate (NMDA) on melanopsin-containing (m+) and non-melanopsin-containing (Brn3a+) retinal ganglion cells (RGCs). In adult SD-rats, the left eye received a single intravitreal injection of 5µL of 100nM NMDA. At 3 and 15 months, retinal thickness was measured in vivo using Spectral Domain-Optical Coherence Tomography (SD-OCT). Ex vivo analyses were done at 3, 7, or 14 days or 15 months after damage. Whole-mounted retinas were immunolabelled for brain-specific homeobox/POU domain protein 3A (Brn3a) and melanopsin (m), the total number of Brn3a+RGCs and m+RGCs were quantified, and their topography represented. In control retinas, the mean total numbers of Brn3a+RGCs and m+RGCs were 78,903 ± 3572 and 2358 ± 144 (mean ± SD; n = 10), respectively. In the NMDA injected retinas, Brn3a+RGCs numbers diminished to 49%, 28%, 24%, and 19%, at 3, 7, 14 days, and 15 months, respectively. There was no further loss between 7 days and 15 months. The number of immunoidentified m+RGCs decreased significantly at 3 days, recovered between 3 and 7 days, and were back to normal thereafter. OCT measurements revealed a significant thinning of the left retinas at 3 and 15 months. Intravitreal injections of NMDA induced within a week a rapid loss of 72% of Brn3a+RGCs, a transient downregulation of melanopsin expression (but not m+RGC death), and a thinning of the inner retinal layers.


Asunto(s)
N-Metilaspartato/toxicidad , Células Ganglionares de la Retina/efectos de los fármacos , Opsinas de Bastones/metabolismo , Animales , Recuento de Células , Femenino , Inyecciones Intravítreas , N-Metilaspartato/administración & dosificación , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Opsinas de Bastones/análisis , Factor de Transcripción Brn-3A/análisis , Factor de Transcripción Brn-3A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA