Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Neurodegener ; 19(1): 49, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890703

RESUMEN

BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of blindness in elderly people in the developed world, and the number of people affected is expected to almost double by 2040. The retina presents one of the highest metabolic demands in our bodies that is partially or fully fulfilled by mitochondria in the neuroretina and retinal pigment epithelium (RPE), respectively. Together with its post-mitotic status and constant photooxidative damage from incoming light, the retina requires a tightly-regulated housekeeping system that involves autophagy. The natural polyphenol Urolithin A (UA) has shown neuroprotective benefits in several models of aging and age-associated disorders, mostly attributed to its ability to induce mitophagy and mitochondrial biogenesis. Sodium iodate (SI) administration recapitulates the late stages of AMD, including geographic atrophy and photoreceptor cell death. METHODS: A combination of in vitro, ex vivo and in vivo models were used to test the neuroprotective potential of UA in the SI model. Functional assays (OCT, ERGs), cellular analysis (flow cytometry, qPCR) and fine confocal microscopy (immunohistochemistry, tandem selective autophagy reporters) helped address this question. RESULTS: UA alleviated neurodegeneration and preserved visual function in SI-treated mice. Simultaneously, we observed severe proteostasis defects upon SI damage induction, including autophagosome accumulation, that were resolved in animals that received UA. Treatment with UA restored autophagic flux and triggered PINK1/Parkin-dependent mitophagy, as previously reported in the literature. Autophagy blockage caused by SI was caused by severe lysosomal membrane permeabilization. While UA did not induce lysosomal biogenesis, it did restore upcycling of permeabilized lysosomes through lysophagy. Knockdown of the lysophagy adaptor SQSTM1/p62 abrogated viability rescue by UA in SI-treated cells, exacerbated lysosomal defects and inhibited lysophagy. CONCLUSIONS: Collectively, these data highlight a novel putative application of UA in the treatment of AMD whereby it bypasses lysosomal defects by promoting p62-dependent lysophagy to sustain proteostasis.


Asunto(s)
Cumarinas , Animales , Ratones , Cumarinas/farmacología , Autofagia/efectos de los fármacos , Autofagia/fisiología , Degeneración Macular/metabolismo , Degeneración Macular/patología , Retina/metabolismo , Retina/efectos de los fármacos , Retina/patología , Mitofagia/efectos de los fármacos , Mitofagia/fisiología , Proteína Sequestosoma-1/metabolismo , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Humanos , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Ratones Endogámicos C57BL , Yodatos/toxicidad
2.
Nat Commun ; 15(1): 830, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280852

RESUMEN

Macroautophagy decreases with age, and this change is considered a hallmark of the aging process. It remains unknown whether mitophagy, the essential selective autophagic degradation of mitochondria, also decreases with age. In our analysis of mitophagy in multiple organs in the mito-QC reporter mouse, mitophagy is either increased or unchanged in old versus young mice. Transcriptomic analysis shows marked upregulation of the type I interferon response in the retina of old mice, which correlates with increased levels of cytosolic mtDNA and activation of the cGAS/STING pathway. Crucially, these same alterations are replicated in primary human fibroblasts from elderly donors. In old mice, pharmacological induction of mitophagy with urolithin A attenuates cGAS/STING activation and ameliorates deterioration of neurological function. These findings point to mitophagy induction as a strategy to decrease age-associated inflammation and increase healthspan.


Asunto(s)
ADN Mitocondrial , Mitofagia , Humanos , Ratones , Animales , Anciano , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Inflamación/genética , Inflamación/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Envejecimiento/genética
3.
Antioxidants (Basel) ; 12(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37760006

RESUMEN

The type III intermediate filament proteins vimentin and GFAP are modulated by oxidants and electrophiles, mainly through perturbation of their single cysteine residues. Desmin, the type III intermediate filament protein specific to muscle cells, is critical for muscle homeostasis, playing a key role in sarcomere organization and mitochondrial function. Here, we have studied the impact of oxidants and cysteine-reactive agents on desmin behavior. Our results show that several reactive species and drugs induce covalent modifications of desmin in vitro, of which its single cysteine residue, C333, is an important target. Moreover, stimuli eliciting oxidative stress or lipoxidation, including H2O2, 15-deoxy-prostaglandin J2, and CoCl2-elicited chemical hypoxia, provoke desmin disorganization in H9c2 rat cardiomyoblasts transfected with wild-type desmin, which is partially attenuated in cells expressing a C333S mutant. Notably, in cells lacking other cytoplasmic intermediate filaments, network formation by desmin C333S appears less efficient than that of desmin wt, especially when these proteins are expressed as fluorescent fusion constructs. Nevertheless, in these cells, the desmin C333S organization is also protected from disruption by oxidants. Taken together, our results indicate that desmin is a target for oxidative and electrophilic stress, which elicit desmin remodeling conditioned by the presence of its single cysteine residue.

4.
Prog Retin Eye Res ; 96: 101205, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37454969

RESUMEN

Mitochondrial function is key to support metabolism and homeostasis in the retina, an organ that has one of the highest metabolic rates body-wide and is constantly exposed to photooxidative damage and external stressors. Mitophagy is the selective autophagic degradation of mitochondria within lysosomes, and can be triggered by distinct stimuli such as mitochondrial damage or hypoxia. Here, we review the importance of mitophagy in retinal physiology and pathology. In the developing retina, mitophagy is essential for metabolic reprogramming and differentiation of retina ganglion cells (RGCs). In basal conditions, mitophagy acts as a quality control mechanism, maintaining a healthy mitochondrial pool to meet cellular demands. We summarize the different autophagy- and mitophagy-deficient mouse models described in the literature, and discuss the potential role of mitophagy dysregulation in retinal diseases such as glaucoma, diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration. Finally, we provide an overview of methods used to monitor mitophagy in vitro, ex vivo, and in vivo. This review highlights the important role of mitophagy in sustaining visual function, and its potential as a putative therapeutic target for retinal and other diseases.


Asunto(s)
Mitofagia , Retina , Ratones , Animales , Mitofagia/fisiología , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Autofagia , Mitocondrias/metabolismo , Homeostasis
5.
Redox Biol ; 55: 102415, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35933901

RESUMEN

Alexander disease is a fatal neurological disorder caused by mutations in the intermediate filament protein Glial Fibrillary Acidic Protein (GFAP), which is key for astrocyte homeostasis. These mutations cause GFAP aggregation, astrocyte dysfunction and neurodegeneration. Remarkably, most of the known GFAP mutations imply a change by more nucleophilic amino acids, mainly cysteine or histidine, which are more susceptible to oxidation and lipoxidation. Therefore, we hypothesized that a higher susceptibility of Alexander disease GFAP mutants to oxidative or electrophilic damage, which frequently occurs during neurodegeneration, could contribute to disease pathogenesis. To address this point, we have expressed GFP-GFAP wild type or the harmful Alexander disease GFP-GFAP R239C mutant in astrocytic cells. Interestingly, GFAP R239C appears more oxidized than the wild type under control conditions, as indicated both by its lower cysteine residue accessibility and increased presence of disulfide-bonded oligomers. Moreover, GFP-GFAP R239C undergoes lipoxidation to a higher extent than GFAP wild type upon treatment with the electrophilic mediator 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2). Importantly, GFAP R239C filament organization is altered in untreated cells and is earlier and more severely disrupted than GFAP wild type upon exposure to oxidants (diamide, H2O2) or electrophiles (4-hydroxynonenal, 15d-PGJ2), which exacerbate GFAP R239C aggregation. Furthermore, H2O2 causes reversible alterations in GFAP wild type, but irreversible damage in GFAP R239C expressing cells. Finally, we show that GFAP R239C expression induces a more oxidized cellular status, with decreased free thiol content and increased mitochondrial superoxide generation. In addition, mitochondria show decreased mass, increased colocalization with GFAP and altered morphology. Notably, a GFP-GFAP R239H mutant recapitulates R239C-elicited alterations whereas an R239G mutant induces a milder phenotype. Together, our results outline a deleterious cycle involving altered GFAP R239C organization, mitochondrial dysfunction, oxidative stress, and further GFAP R239C protein damage and network disruption, which could contribute to astrocyte derangement in Alexander disease.

6.
Sci Rep ; 12(1): 7063, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35487944

RESUMEN

The SARS-CoV-2 Spike protein mediates docking of the virus onto cells prior to viral invasion. Several cellular receptors facilitate SARS-CoV-2 Spike docking at the cell surface, of which ACE2 plays a key role in many cell types. The intermediate filament protein vimentin has been reported to be present at the surface of certain cells and act as a co-receptor for several viruses; furthermore, its potential involvement in interactions with Spike proteins has been proposed. Nevertheless, the potential colocalization of vimentin with Spike and its receptors on the cell surface has not been explored. Here we have assessed the binding of Spike protein constructs to several cell types. Incubation of cells with tagged Spike S or Spike S1 subunit led to discrete dotted patterns at the cell surface, which consistently colocalized with endogenous ACE2, but sparsely with a lipid raft marker. Vimentin immunoreactivity mostly appeared as spots or patches unevenly distributed at the surface of diverse cell types. Of note, vimentin could also be detected in extracellular particles and in the cytoplasm underlying areas of compromised plasma membrane. Interestingly, although overall colocalization of vimentin-positive spots with ACE2 or Spike was moderate, a selective enrichment of the three proteins was detected at elongated structures, positive for acetylated tubulin and ARL13B. These structures, consistent with primary cilia, concentrated Spike binding at the top of the cells. Our results suggest that a vimentin-Spike interaction could occur at selective locations of the cell surface, including ciliated structures, which can act as platforms for SARS-CoV-2 docking.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2 , Cilios/metabolismo , Humanos , Microdominios de Membrana/metabolismo , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vimentina
7.
Antioxidants (Basel) ; 10(2)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669164

RESUMEN

Protein lipoxidation is a non-enzymatic post-translational modification that consists of the covalent addition of reactive lipid species to proteins. This occurs under basal conditions but increases in situations associated with oxidative stress. Protein targets for lipoxidation include metabolic and signalling enzymes, cytoskeletal proteins, and transcription factors, among others. There is strong evidence for the involvement of protein lipoxidation in disease, including atherosclerosis, neurodegeneration, and cancer. Nevertheless, the involvement of lipoxidation in cellular regulatory mechanisms is less understood. Here we review basic aspects of protein lipoxidation and discuss several features that could support its role in cell signalling, including its selectivity, reversibility, and possibilities for regulation at the levels of the generation and/or detoxification of reactive lipids. Moreover, given the great structural variety of electrophilic lipid species, protein lipoxidation can contribute to the generation of multiple structurally and functionally diverse protein species. Finally, the nature of the lipoxidised proteins and residues provides a frameshift for a complex interplay with other post-translational modifications, including redox and redox-regulated modifications, such as oxidative modifications and phosphorylation, thus strengthening the importance of detailed knowledge of this process.

8.
Redox Biol ; 36: 101582, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32711378

RESUMEN

Intermediate filaments (IFs) play key roles in cell mechanics, signaling and homeostasis. Their assembly and dynamics are finely regulated by posttranslational modifications. The type III IFs, vimentin, desmin, peripherin and glial fibrillary acidic protein (GFAP), are targets for diverse modifications by oxidants and electrophiles, for which their conserved cysteine residue emerges as a hot spot. Pathophysiological examples of these modifications include lipoxidation in cell senescence and rheumatoid arthritis, disulfide formation in cataracts and nitrosation in endothelial shear stress, although some oxidative modifications can also be detected under basal conditions. We previously proposed that cysteine residues of vimentin and GFAP act as sensors for oxidative and electrophilic stress, and as hinges influencing filament assembly. Accumulating evidence indicates that the structurally diverse cysteine modifications, either per se or in combination with other posttranslational modifications, elicit specific functional outcomes inducing distinct assemblies or network rearrangements, including filament stabilization, bundling or fragmentation. Cysteine-deficient mutants are protected from these alterations but show compromised cellular performance in network assembly and expansion, organelle positioning and aggresome formation, revealing the importance of this residue. Therefore, the high susceptibility to modification of the conserved cysteine of type III IFs and its cornerstone position in filament architecture sustains their role in redox sensing and integration of cellular responses. This has deep pathophysiological implications and supports the potential of this residue as a drug target.


Asunto(s)
Filamentos Intermedios , Oxidantes , Citoesqueleto , Proteína Ácida Fibrilar de la Glía , Vimentina
9.
Nat Commun ; 10(1): 4200, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31519880

RESUMEN

The vimentin network displays remarkable plasticity to support basic cellular functions and reorganizes during cell division. Here, we show that in several cell types vimentin filaments redistribute to the cell cortex during mitosis, forming a robust framework interwoven with cortical actin and affecting its organization. Importantly, the intrinsically disordered tail domain of vimentin is essential for this redistribution, which allows normal mitotic progression. A tailless vimentin mutant forms curly bundles, which remain entangled with dividing chromosomes leading to mitotic catastrophes or asymmetric partitions. Serial deletions of vimentin tail domain gradually impair cortical association and mitosis progression. Disruption of f-actin, but not of microtubules, causes vimentin bundling near the chromosomes. Pathophysiological stimuli, including HIV-protease and lipoxidation, induce similar alterations. Interestingly, full filament formation is dispensable for cortical association, which also occurs in vimentin particles. These results unveil implications of vimentin dynamics in cell division through its interplay with the actin cortex.


Asunto(s)
Actinas/metabolismo , Vimentina/metabolismo , Western Blotting , División Celular/fisiología , Línea Celular Tumoral , Humanos , Filamentos Intermedios/metabolismo , Microscopía Fluorescente , Mitosis/fisiología
11.
Free Radic Biol Med ; 120: 380-394, 2018 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-29635011

RESUMEN

The type III intermediate filament protein glial fibrillary acidic protein (GFAP) contributes to the homeostasis of astrocytes, where it co-polymerizes with vimentin. Conversely, alterations in GFAP assembly or degradation cause intracellular aggregates linked to astrocyte dysfunction and neurological disease. Moreover, injury and inflammation elicit extensive GFAP organization and expression changes, which underline reactive gliosis. Here we have studied GFAP as a target for modification by electrophilic inflammatory mediators. We show that the GFAP cysteine, C294, is targeted by lipoxidation by cyclopentenone prostaglandins (cyPG) in vitro and in cells. Electrophilic modification of GFAP in cells leads to a striking filament rearrangement, with retraction from the cell periphery and juxtanuclear condensation in thick bundles. Importantly, the C294S mutant is resistant to cyPG addition and filament disruption, thus highlighting the critical role of this residue as a sensor of oxidative damage. However, GFAP C294S shows defective or delayed network formation in GFAP-deficient cells, including SW13/cl.2 cells and GFAP- and vimentin-deficient primary astrocytes. Moreover, GFAP C294S does not effectively integrate with and even disrupts vimentin filaments in the short-term. Interestingly, short-spacer bifunctional cysteine crosslinking produces GFAP-vimentin heterodimers, suggesting that a certain proportion of cysteine residues from both proteins are spatially close. Collectively, these results support that the conserved cysteine residue in type III intermediate filament proteins serves as an electrophilic stress sensor and structural element. Therefore, oxidative modifications of this cysteine could contribute to GFAP disruption or aggregation in pathological situations associated with oxidative or electrophilic stress.


Asunto(s)
Astrocitos/química , Astrocitos/metabolismo , Cisteína/química , Proteína Ácida Fibrilar de la Glía/química , Proteína Ácida Fibrilar de la Glía/metabolismo , Animales , Bovinos , Cisteína/metabolismo , Humanos , Proteínas de Filamentos Intermediarios/química , Proteínas de Filamentos Intermediarios/metabolismo , Ratones , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Oxidación-Reducción , Estrés Oxidativo/fisiología , Prostaglandinas/química , Prostaglandinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA