RESUMEN
The harbour seal (Phoca vitulina) is the most widely distributed pinniped, occupying a wide variety of habitats and climatic zones across the Northern Hemisphere. Intriguingly, the harbour seal is also one of the most philopatric seals, raising questions as to how it colonized its current range. To shed light on the origin, remarkable range expansion, population structure and genetic diversity of this species, we used genotyping-by-sequencing to analyse ~13,500 biallelic single nucleotide polymorphisms from 286 individuals sampled from 22 localities across the species' range. Our results point to a Northeast Pacific origin of the harbour seal, colonization of the North Atlantic via the Canadian Arctic, and subsequent stepping-stone range expansions across the North Atlantic from North America to Europe, accompanied by a successive loss of genetic diversity. Our analyses further revealed a deep divergence between modern North Pacific and North Atlantic harbour seals, with finer-scale genetic structure at regional and local scales consistent with strong philopatry. The study provides new insights into the harbour seal's remarkable ability to colonize and adapt to a wide range of habitats. Furthermore, it has implications for current harbour seal subspecies delineations and highlights the need for international and national red lists and management plans to ensure the protection of genetically and demographically isolated populations.
Asunto(s)
Phoca , Adaptación Fisiológica , Animales , Canadá , Europa (Continente) , Metagenómica , Phoca/genéticaRESUMEN
Large vertebrates are extremely sensitive to anthropogenic pressure, and their populations are declining fast. The white rhinoceros (Ceratotherium simum) is a paradigmatic case: this African megaherbivore has suffered a remarkable decline in the last 150 years due to human activities. Its subspecies, the northern (NWR) and the southern white rhinoceros (SWR), however, underwent opposite fates: the NWR vanished quickly, while the SWR recovered after the severe decline. Such demographic events are predicted to have an erosive effect at the genomic level, linked to the extirpation of diversity, and increased genetic drift and inbreeding. However, there is little empirical data available to directly reconstruct the subtleties of such processes in light of distinct demographic histories. Therefore, we generated a whole-genome, temporal data set consisting of 52 resequenced white rhinoceros genomes, representing both subspecies at two time windows: before and during/after the bottleneck. Our data reveal previously unknown population structure within both subspecies, as well as quantifiable genomic erosion. Genome-wide heterozygosity decreased significantly by 10% in the NWR and 36% in the SWR, and inbreeding coefficients rose significantly by 11% and 39%, respectively. Despite the remarkable loss of genomic diversity and recent inbreeding it suffered, the only surviving subspecies, the SWR, does not show a significant accumulation of genetic load compared to its historical counterpart. Our data provide empirical support for predictions about the genomic consequences of shrinking populations, and our findings have the potential to inform the conservation efforts of the remaining white rhinoceroses.
Asunto(s)
Efectos Antropogénicos , Perisodáctilos , Animales , Genómica , Endogamia , Perisodáctilos/genéticaRESUMEN
North America is currently home to a number of grey wolf (Canis lupus) and wolf-like canid populations, including the coyote (Canis latrans) and the taxonomically controversial red, Eastern timber and Great Lakes wolves. We explored their population structure and regional gene flow using a dataset of 40 full genome sequences that represent the extant diversity of North American wolves and wolf-like canid populations. This included 15 new genomes (13 North American grey wolves, 1 red wolf and 1 Eastern timber/Great Lakes wolf), ranging from 0.4 to 15x coverage. In addition to providing full genome support for the previously proposed coyote-wolf admixture origin for the taxonomically controversial red, Eastern timber and Great Lakes wolves, the discriminatory power offered by our dataset suggests all North American grey wolves, including the Mexican form, are monophyletic, and thus share a common ancestor to the exclusion of all other wolves. Furthermore, we identify three distinct populations in the high arctic, one being a previously unidentified "Polar wolf" population endemic to Ellesmere Island and Greenland. Genetic diversity analyses reveal particularly high inbreeding and low heterozygosity in these Polar wolves, consistent with long-term isolation from the other North American wolves.
Asunto(s)
Coyotes/genética , Genética de Población , Genoma , Genómica , Lobos/genética , Animales , Genómica/métodos , Genotipo , América del Norte , FilogeniaRESUMEN
The domestication history of rice remains controversial, with multiple studies reaching different conclusions regarding its origin(s). These studies have generally assumed that populations of living wild rice, O. rufipogon, are descendants of the ancestral population that gave rise to domesticated rice, but relatively little attention has been paid to the origins and history of wild rice itself. Here, we investigate the genetic ancestry of wild rice by analyzing a diverse panel of rice genomes consisting of 203 domesticated and 435 wild rice accessions. We show that most modern wild rice is heavily admixed with domesticated rice through both pollen- and seed-mediated gene flow. In fact, much presumed wild rice may simply represent different stages of feralized domesticated rice. In line with this hypothesis, many presumed wild rice varieties show remnants of the effects of selective sweeps in previously identified domestication genes, as well as evidence of recent selection in flowering genes possibly associated with the feralization process. Furthermore, there is a distinct geographical pattern of gene flow from aus, indica, and japonica varieties into colocated wild rice. We also show that admixture from aus and indica is more recent than gene flow from japonica, possibly consistent with an earlier spread of japonica varieties. We argue that wild rice populations should be considered a hybrid swarm, connected to domesticated rice by continuous and extensive gene flow.
Asunto(s)
Domesticación , Flujo Génico , Genoma de Planta , Hibridación Genética , Oryza/genética , Humanos , Oryza/clasificación , Filogenia , Fitomejoramiento , Selección GenéticaRESUMEN
MOTIVATION: Linkage disequilibrium (LD) measures the correlation between genetic loci and is highly informative for association mapping and population genetics. As many studies rely on called genotypes for estimating LD, their results can be affected by data uncertainty, especially when employing a low read depth sequencing strategy. Furthermore, there is a manifest lack of tools for the analysis of large-scale, low-depth and short-read sequencing data from non-model organisms with limited sample sizes. RESULTS: ngsLD addresses these issues by estimating LD directly from genotype likelihoods in a fast, reliable and user-friendly implementation. This method makes use of the full information available from sequencing data and provides accurate estimates of linkage disequilibrium patterns compared with approaches based on genotype calling. We conducted a case study to investigate how LD decays over physical distance in two avian species. AVAILABILITY AND IMPLEMENTATION: The methods presented in this work were implemented in C/C and are freely available for non-commercial use from https://github.com/fgvieira/ngsLD. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Programas Informáticos , Genética de Población , Genotipo , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , ProbabilidadRESUMEN
BACKGROUND: Automated bioinformatics workflows are more robust, easier to maintain, and results more reproducible when built with command-line utilities than with custom-coded scripts. Command-line utilities further benefit by relieving bioinformatics developers to learn the use of, or to interact directly with, biological software libraries. There is however a lack of command-line utilities that leverage popular Open Source biological software toolkits such as BioPerl ( http://bioperl.org ) to make many of the well-designed, robust, and routinely used biological classes available for a wider base of end users. RESULTS: Designed as standard utilities for UNIX-family operating systems, BpWrapper makes functionality of some of the most popular BioPerl modules readily accessible on the command line to novice as well as to experienced bioinformatics practitioners. The initial release of BpWrapper includes four utilities with concise command-line user interfaces, bioseq, bioaln, biotree, and biopop, specialized for manipulation of molecular sequences, sequence alignments, phylogenetic trees, and DNA polymorphisms, respectively. Over a hundred methods are currently available as command-line options and new methods are easily incorporated. Performance of BpWrapper utilities lags that of precompiled utilities while equivalent to that of other utilities based on BioPerl. BpWrapper has been tested on BioPerl Release 1.6, Perl versions 5.10.1 to 5.25.10, and operating systems including Apple macOS, Microsoft Windows, and GNU/Linux. Release code is available from the Comprehensive Perl Archive Network (CPAN) at https://metacpan.org/pod/Bio::BPWrapper . Source code is available on GitHub at https://github.com/bioperl/p5-bpwrapper . CONCLUSIONS: BpWrapper improves on existing sequence utilities by following the design principles of Unix text utilities such including a concise user interface, extensive command-line options, and standard input/output for serialized operations. Further, dozens of novel methods for manipulation of sequences, alignments, and phylogenetic trees, unavailable in existing utilities (e.g., EMBOSS, Newick Utilities, and FAST), are provided. Bioinformaticians should find BpWrapper useful for rapid prototyping of workflows on the command-line without creating custom scripts for comparative genomics and other bioinformatics applications.
Asunto(s)
Biología Computacional/métodos , Filogenia , Programas Informáticos , Secuencia de Bases , Alineación de SecuenciaRESUMEN
Lions (Panthera leo) are of particular conservation concern due to evidence of recent, widespread population declines in what has hitherto been seen as a common species, robust to anthropogenic disturbance. Here we use non-invasive methods to recover complete mitochondrial genomes from single hair samples collected in the field in order to explore the identity of the Gabonese Plateaux Batéké lion. Comparison of the mitogenomes against a comprehensive dataset of African lion sequences that includes relevant geographically proximate lion populations from both contemporary and ancient sources, enabled us to identify the Plateaux Batéké lion as a close maternal relative to now extirpated populations found in Gabon and nearby Congo during the twentieth century, and to extant populations of Southern Africa. Our study demonstrates the relevance of ancient DNA methods to field conservation work, and the ability of trace field samples to provide copious genetic information about free-ranging animals.
RESUMEN
As the oomycete pathogen causing potato late blight disease, Phytophthora infestans triggered the famous 19th-century Irish potato famine and remains the leading cause of global commercial potato crop destruction. But the geographic origin of the genotype that caused this devastating initial outbreak remains disputed, as does the New World center of origin of the species itself. Both Mexico and South America have been proposed, generating considerable controversy. Here, we readdress the pathogen's origins using a genomic data set encompassing 71 globally sourced modern and historical samples of P. infestans and the hybrid species P. andina, a close relative known only from the Andean highlands. Previous studies have suggested that the nuclear DNA lineage behind the initial outbreaks in Europe in 1845 is now extinct. Analysis of P. andina's phased haplotypes recovered eight haploid genome sequences, four of which represent a previously unknown basal lineage of P. infestans closely related to the famine-era lineage. Our analyses further reveal that clonal lineages of both P. andina and historical P. infestans diverged earlier than modern Mexican lineages, casting doubt on recent claims of a Mexican center of origin. Finally, we use haplotype phasing to demonstrate that basal branches of the clade comprising Mexican samples are occupied by clonal isolates collected from wild Solanum hosts, suggesting that modern Mexican P. infestans diversified on Solanum tuberosum after a host jump from a wild species and that the origins of P. infestans are more complex than was previously thought.
Asunto(s)
Evolución Molecular , Genoma , Genómica , Hibridación Genética , Phytophthora infestans/clasificación , Phytophthora infestans/genética , Flujo Génico , Genoma Mitocondrial , Genómica/métodos , Genotipo , Haplotipos , Desequilibrio de Ligamiento , Filogenia , Enfermedades de las Plantas , Reproducción/genética , América del SurRESUMEN
MOTIVATION: The amount of IBD in an individual depends on the relatedness of the individual's parents. However, it can also provide information regarding mating system, past history and effective size of the population from which the individual has been sampled. RESULTS: Here, we present a new method for estimating inbreeding IBD tracts from low coverage NGS data. Contrary to other methods that use genotype data, the one presented here uses genotype likelihoods to take the uncertainty of the data into account. We benchmark it under a wide range of biologically relevant conditions and show that the new method provides a marked increase in accuracy even at low coverage. AVAILABILITY AND IMPLEMENTATION: The methods presented in this work were implemented in C/C ++ and are freely available for non-commercial use from https://github.com/fgvieira/ngsF-HMM CONTACT: fgvieira@snm.ku.dk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Endogamia , Programas Informáticos , Genotipo , Técnicas de Genotipaje , Humanos , Oryza/genética , Análisis de Secuencia de ADNRESUMEN
Most methods for next-generation sequencing (NGS) data analyses incorporate information regarding allele frequencies using the assumption of Hardy-Weinberg equilibrium (HWE) as a prior. However, many organisms including those that are domesticated, partially selfing, or with asexual life cycles show strong deviations from HWE. For such species, and specially for low-coverage data, it is necessary to obtain estimates of inbreeding coefficients (F) for each individual before calling genotypes. Here, we present two methods for estimating inbreeding coefficients from NGS data based on an expectation-maximization (EM) algorithm. We assess the impact of taking inbreeding into account when calling genotypes or estimating the site frequency spectrum (SFS), and demonstrate a marked increase in accuracy on low-coverage highly inbred samples. We demonstrate the applicability and efficacy of these methods in both simulated and real data sets.
Asunto(s)
Frecuencia de los Genes , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Endogamia , Algoritmos , Animales , Simulación por Computador , Genética de Población , HumanosRESUMEN
SUMMARY: Next-generation sequencing technologies produce short reads that are either de novo assembled or mapped to a reference genome. Genotypes and/or single-nucleotide polymorphisms are then determined from the read composition at each site, which become the basis for many downstream analyses. However, for low sequencing depths, e.g. , there is considerable statistical uncertainty in the assignment of genotypes because of random sampling of homologous base pairs in heterozygotes and sequencing or alignment errors. Recently, several probabilistic methods have been proposed to account for this uncertainty and make accurate inferences from low quality and/or coverage sequencing data. We present ngsTools, a collection of programs to perform population genetics analyses from next-generation sequencing data. The methods implemented in these programs do not rely on single-nucleotide polymorphism or genotype calling and are particularly suitable for low sequencing depth data. AVAILABILITY: Programs included in ngsTools are implemented in C/C++ and are freely available for noncommercial use at https://github.com/mfumagalli/ngsTools. CONTACT: mfumagalli82@gmail.com SUPPLEMENTARY INFORMATION: Supplementary materials are available at Bioinformatics online.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Algoritmos , Genética de Población , Genoma , Genotipo , Polimorfismo de Nucleótido Simple , Programas InformáticosRESUMEN
As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.
Asunto(s)
Genoma Bacteriano/genética , Genoma de los Insectos/genética , Pediculus/genética , Pediculus/microbiología , Animales , Enterobacteriaceae/genética , Genes Bacterianos/genética , Genes de Insecto/genética , Genómica/métodos , Humanos , Infestaciones por Piojos/parasitología , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , SimbiosisRESUMEN
Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%-40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th-19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.
Asunto(s)
Peste , Humanos , Peste/epidemiología , Peste/genética , Pandemias/historia , Metagenómica , Genoma Bacteriano , FilogeniaRESUMEN
Retracing pathways of historical species introductions is fundamental to understanding the factors involved in the successful colonization and spread, centuries after a species' establishment in an introduced range. Numerous plants have been introduced to regions outside their native ranges both intentionally and accidentally by European voyagers and early colonists making transoceanic journeys; however, records are scarce to document this. We use genotyping-by-sequencing and genotype-likelihood methods on the selfing, global weed, Plantago major, collected from 50 populations worldwide to investigate how patterns of genomic diversity are distributed among populations of this global weed. Although genomic differentiation among populations is found to be low, we identify six unique genotype groups showing very little sign of admixture and low degree of outcrossing among them. We show that genotype groups are latitudinally restricted, and that more than one successful genotype colonized and spread into the introduced ranges. With the exception of New Zealand, only one genotype group is present in the Southern Hemisphere. Three of the most prevalent genotypes present in the native Eurasian range gave rise to introduced populations in the Americas, Africa, Australia, and New Zealand, which could lend support to the hypothesis that P. major was unknowlingly dispersed by early European colonists. Dispersal of multiple successful genotypes is a likely reason for success. Genomic signatures and phylogeographic methods can provide new perspectives on the drivers behind the historic introductions and the successful colonization of introduced species, contributing to our understanding of the role of genomic variation for successful establishment of introduced taxa.
RESUMEN
Activating variants in the receptor tyrosine kinase REarranged during Transfection (RET) cause multiple endocrine neoplasia type 2 (MEN 2), an autosomal dominantly inherited cancer-susceptibility syndrome. The variant c.166C>A, p.Leu56Met in RET was recently reported in two patients with medullary thyroid cancer (MTC). The presence of a pheochromocytoma in one of the patients, suggested a possible pathogenic role of the variant in MEN 2A. Here, we present clinical follow up of a Danish RET Leu56Met cohort. Patients were evaluated for signs of MEN 2 according to a set of predefined criteria. None of the seven patients in our cohort exhibited evidence of MEN 2. Furthermore, we found the Leu56Met variant in our in-house diagnostic cohort with an allele frequency of 0.59%, suggesting that it is a common variant in the population. Additionally, none of the patients who harbored the allele were listed in the Danish MTC and MEN 2 registries. In conclusion, our findings do not support a pathogenic role of the Leu56Met variant in MEN 2.
Asunto(s)
Variación Genética/genética , Mutación de Línea Germinal/genética , Leucina/genética , Metionina/genética , Neoplasia Endocrina Múltiple Tipo 2a/genética , Proteínas Proto-Oncogénicas c-ret/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Dinamarca/epidemiología , Femenino , Pruebas Genéticas/métodos , Humanos , Masculino , Persona de Mediana Edad , Neoplasia Endocrina Múltiple Tipo 2a/diagnóstico , Neoplasia Endocrina Múltiple Tipo 2a/epidemiologíaRESUMEN
The evolution of the genera Bos and Bison, and the nature of gene flow between wild and domestic species, is poorly understood, with genomic data of wild species being limited. We generated two genomes from the likely extinct kouprey (Bos sauveli) and analyzed them alongside other Bos and Bison genomes. We found that B. sauveli possessed genomic signatures characteristic of an independent species closely related to Bos javanicus and Bos gaurus. We found evidence for extensive incomplete lineage sorting across the three species, consistent with a polytomic diversification of the major ancestry in the group, potentially followed by secondary gene flow. Finally, we detected significant gene flow from an unsampled Asian Bos-like source into East Asian zebu cattle, demonstrating both that the full genomic diversity and evolutionary history of the Bos complex has yet to be elucidated and that museum specimens and ancient DNA are valuable resources to do so.
RESUMEN
Although sled dogs are one of the most specialized groups of dogs, their origin and evolution has received much less attention than many other dog groups. We applied a genomic approach to investigate their spatiotemporal emergence by sequencing the genomes of 10 modern Greenland sled dogs, an ~9500-year-old Siberian dog associated with archaeological evidence for sled technology, and an ~33,000-year-old Siberian wolf. We found noteworthy genetic similarity between the ancient dog and modern sled dogs. We detected gene flow from Pleistocene Siberian wolves, but not modern American wolves, to present-day sled dogs. The results indicate that the major ancestry of modern sled dogs traces back to Siberia, where sled dog-specific haplotypes of genes that potentially relate to Arctic adaptation were established by 9500 years ago.
Asunto(s)
Adaptación Fisiológica/genética , Perros/genética , Animales , Apolipoproteínas/genética , Regiones Árticas , Ácidos Grasos/metabolismo , Genoma , Groenlandia , Haplotipos , Proteínas de Transporte de Membrana Mitocondrial/genética , Selección Artificial , Análisis de Secuencia de ADN , Siberia , Triglicéridos/metabolismo , Lobos/genéticaRESUMEN
In the 1950s the myxoma virus was released into European rabbit populations in Australia and Europe, decimating populations and resulting in the rapid evolution of resistance. We investigated the genetic basis of resistance by comparing the exomes of rabbits collected before and after the pandemic. We found a strong pattern of parallel evolution, with selection on standing genetic variation favoring the same alleles in Australia, France, and the United Kingdom. Many of these changes occurred in immunity-related genes, supporting a polygenic basis of resistance. We experimentally validated the role of several genes in viral replication and showed that selection acting on an interferon protein has increased the protein's antiviral effect.
Asunto(s)
Adaptación Biológica/genética , Inmunidad Innata/genética , Myxoma virus/inmunología , Mixomatosis Infecciosa/inmunología , Conejos/genética , Conejos/virología , Alelos , Animales , Australia , Evolución Molecular , Francia , Frecuencia de los Genes , Variación Genética , Interferón alfa-2/genética , Interferón alfa-2/inmunología , Mixomatosis Infecciosa/genética , Polimorfismo de Nucleótido Simple , Población , Conejos/inmunología , Reino UnidoRESUMEN
Many genes are subject to contradictory selection pressures in males and females, and balancing selection resulting from sexual conflict has the potential to substantially increase standing genetic diversity in populations and thereby act as an important force in adaptation. However, the underlying causes of sexual conflict, and the potential for resolution, remains hotly debated. Using transcriptome-resequencing data from male and female guppies, we use a novel approach, combining patterns of genetic diversity and intersexual divergence in allele frequency, to distinguish the different scenarios that give rise to sexual conflict, and how this conflict may be resolved through regulatory evolution. We show that reproductive fitness is the main source of sexual conflict, and this is resolved via the evolution of male-biased expression. Furthermore, resolution of sexual conflict produces significant differences in genetic architecture between males and females, which in turn lead to specific alleles influencing sex-specific viability. Together, our findings suggest an important role for sexual conflict in shaping broad patterns of genome diversity, and show that regulatory evolution is a rapid and efficient route to the resolution of conflict.
RESUMEN
The evolutionary history of the wolf-like canids of the genus Canis has been heavily debated, especially regarding the number of distinct species and their relationships at the population and species level [1-6]. We assembled a dataset of 48 resequenced genomes spanning all members of the genus Canis except the black-backed and side-striped jackals, encompassing the global diversity of seven extant canid lineages. This includes eight new genomes, including the first resequenced Ethiopian wolf (Canis simensis), one dhole (Cuon alpinus), two East African hunting dogs (Lycaon pictus), two Eurasian golden jackals (Canis aureus), and two Middle Eastern gray wolves (Canis lupus). The relationships between the Ethiopian wolf, African golden wolf, and golden jackal were resolved. We highlight the role of interspecific hybridization in the evolution of this charismatic group. Specifically, we find gene flow between the ancestors of the dhole and African hunting dog and admixture between the gray wolf, coyote (Canis latrans), golden jackal, and African golden wolf. Additionally, we report gene flow from gray and Ethiopian wolves to the African golden wolf, suggesting that the African golden wolf originated through hybridization between these species. Finally, we hypothesize that coyotes and gray wolves carry genetic material derived from a "ghost" basal canid lineage.