Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Appl Microbiol Biotechnol ; 103(21-22): 9131-9141, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31515598

RESUMEN

The biological treatment of oil refinery effluents in wastewater treatment plants (WWTPs) relies on specialized bacteria contributing to remove organic load, nitrogen, sulfur, and phosphorus compounds. Knowledge about bacterial dynamics in WWTPs and how they affect the performance of the wastewater treatment is limited, particularly in tropical countries. The bacterial communities from three compartments of an oil refinery WWTP in Uran, India, were assessed using 16S-metabarcoding, in winter and monsoon seasons, upstream (from the surge pond) and downstream the biotower (clarifier and guard pond), to understand the effects of seasonal variations in WWTP's efficiency. The organic load and ammonia levels of the treated wastewater increased by 3- and 9-fold in the monsoon time-point. A decreased abundance and diversity of 47 genera (325 OTUs) comprising ammonia and nitrite oxidizing bacteria (AOB, NOB, denitrifiers) was observed in the monsoon season downstream the biotower, whereas 23 OTUs of Sulfurospirillum, Desulfovibrio, and Bacillus, putatively performing dissimilatory nitrate reduction to ammonia (DNRA), were 3-fold more abundant in the same compartments (DNRA/denitrifiers winter ratio < 0.5 vs. monsoon ratio around 3). The total abundance of reported sulfate- and sulfite-reducing bacteria also increased 250- and 500-fold downstream the biotower, in the monsoon time-point. Bacteria performing DNRA may thus outcompete denitrification in this WWTP, limiting the biodegradation process. The alterations detected in bacterial populations involved in the removal of nitrogen and sulfur species evidenced a reduced quality of the released wastewater and may be good candidates for the following monitoring strategies and optimization of the wastewater treatment.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiota , Aguas Residuales/microbiología , Amoníaco/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Desnitrificación , India , Nitratos/metabolismo , Nitritos/metabolismo , Petróleo/metabolismo , Filogenia , Estaciones del Año
2.
Microorganisms ; 11(3)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36985325

RESUMEN

Contamination of the environment with crude oil or other fuels is an enormous disaster for all organisms. The microbial communities for bioremediation have been an effective tool for eliminating pollution. This study aimed to determine individual cultures' and a strain mixture's ability to utilize alkanes (single alkanes and crude oil). The proper study of pure cultures is necessary to design synergistically working consortia. The Acinetobacter venetianus ICP1 and Pseudomonas oleovorans ICTN13 strains isolated from a wastewater treatment plant of a crude oil refinery can grow in media containing various aromatic and aliphatic hydrocarbons. The genome of the strain ICP1 contains four genes encoding alkane hydroxylases, whose transcription depended on the length of the alkane in the media. We observed that the hydrophobic cells of the strain ICP1 adhered to hydrophobic substrates, and their biofilm formation increased the bioavailability and biodegradation of the hydrocarbons. Although strain ICTN13 also has one alkane hydroxylase-encoding gene, the growth of the strain in a minimal medium containing alkanes was weak. Importantly, the growth of the mixture of strains in the crude oil-containing medium was enhanced compared with that of the single strains, probably due to the specialization in the degradation of different hydrocarbon classes and co-production of biosurfactants.

3.
Bioresour Technol ; 338: 125568, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34274579

RESUMEN

Bioaugmentation in wastewater treatment plants (WWTPs) is challenging due to low survival and persistence of applied microbes. This study aimed to track the capacity and survival of fluorescent-tagged Pseudomonas oleovoransICTN13 as a model organism applicable in bioaugmentation of phenol-containing wastewater. The isolate was immobilized in alginate biopolymer, and enhanced efficacy and survival for biodegradation of phenol against free cells were studied. Encapsulated cells resulted in enhanced phenol removal efficiency (~94%) compared to free cells (~72%). Encapsulation of cells facilitated an extended storage time of 30 days. Remarkably, phenol and COD removal efficacy of encapsulated cells was sustained up to ~ 92-93% in a reactor after 45 days, while free cells could produce ~ 80-84% removal efficiency. Fluorescence microscopy showed high survival of the encapsulated cells, whereas gradual deterioration of free cells was observed. Thus, the findings highlight the importance of bio augmented strain in WWTPs where encapsulation is a crucial factor.


Asunto(s)
Fenol , Pseudomonas oleovorans , Biodegradación Ambiental , Células Inmovilizadas , Fenoles , Aguas Residuales
4.
Microorganisms ; 8(5)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365784

RESUMEN

The drilling, processing and transportation of oil are the main sources of pollution in water and soil. The current work analyzes the microbial diversity and aromatic compounds degradation potential in the metagenomes of communities in the wastewater treatment plant (WWTP) of a crude oil refinery. By focusing on the degradation of phenol, we observed the involvement of diverse indigenous microbial communities at different steps of the WWTP. The anaerobic bacterial and archaeal genera were replaced by aerobic and facultative anaerobic bacteria through the biological treatment processes. The phyla Proteobacteria, Bacteroidetes and Planctomycetes were dominating at different stages of the treatment. Most of the established protein sequences of the phenol degradation key enzymes belonged to bacteria from the class Alphaproteobacteria. From 35 isolated strains, 14 were able to grow on aromatic compounds, whereas several phenolic compound-degrading strains also degraded aliphatic hydrocarbons. Two strains, Acinetobacter venetianus ICP1 and Pseudomonas oleovorans ICTN13, were able to degrade various aromatic and aliphatic pollutants and were further characterized by whole genome sequencing and cultivation experiments in the presence of phenol to ascertain their metabolic capacity in phenol degradation. When grown alone, the intermediates of catechol degradation, the meta or ortho pathways, accumulated into the growth environment of these strains. In the mixed cultures of the strains ICP1 and ICTN13, phenol was degraded via cooperation, in which the strain ICP1 was responsible for the adherence of cells and ICTN13 diminished the accumulation of toxic intermediates.

5.
Front Microbiol ; 9: 15, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29410652

RESUMEN

The Baltic Sea is vulnerable to environmental changes. With the increasing shipping activities, the risk of oil spills remains high. Archaea are widely distributed in many environments. However, the distribution and the response of archaeal communities to oil contamination have rarely been investigated in brackish habitats. Hence, we conducted a survey to investigate the distribution, diversity, composition, and species interactions of indigenous archaeal communities at oil-contaminated sites along the coast of the Gulf of Finland (GoF) using high-throughput sequencing. Surface water and littoral sediment samples were collected at presumably oil-contaminated (oil distribution facilities) and clean sites along the coastline of the GoF in the winter 2015 and the summer 2016. Another three samples of open sea surface water were taken as offshore references. Of Archaea, Euryarchaeota dominated in the surface water and the littoral sediment of the coast of the GoF, followed by Crenarchaeota (including Thaumarchaeota, Thermoprotei, and Korarchaeota based on the Greengenes database used). The unclassified sequences accounted for 5.62% of the total archaeal sequences. Our study revealed a strong dependence of the archaeal community composition on environmental variables (e.g., salinity, pH, oil concentration, TOM, electrical conductivity, and total DNA concentration) in both littoral sediment and coastal water in the GoF. The composition of archaeal communities was season and ecosystem dependent. Archaea was highly diverse in the three ecosystems (littoral sediment, coastal water, and open sea water). Littoral sediment harbored the highest diversity of archaea. Oil was often detected in the littoral sediment but rarely detected in water at those presumably contaminated sites. Although the composition of archaeal community in the littoral sediment was sensitive to low-input oil contamination, the unchanged putative functional profiles and increased interconnectivity of the archaeal core species network plausibly revealed resilience and the potential for oil degradation. Halobacteriaceae and putative cytochrome P450 pathways were significantly enriched in the oil-contaminated littoral sediment. The archaeal taxa formed highly interconnected and interactive networks, in which Halobacteriaceae, Thermococcus, and methanogens were the main components, implying a potential relevant trophic connection between hydrocarbon degradation, methanogenesis, sulfate reduction, and/or fermentative growth.

6.
PLoS One ; 12(3): e0173180, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28257519

RESUMEN

Phenol- and naphthalene-degrading indigenous Pseudomonas pseudoalcaligenes strain C70 has great potential for the bioremediation of polluted areas. It harbours two chromosomally located catechol meta pathways, one of which is structurally and phylogenetically very similar to the Pseudomonas sp. CF600 dmp operon and the other to the P. stutzeri AN10 nah lower operon. The key enzymes of the catechol meta pathway, catechol 2,3-dioxygenase (C23O) from strain C70, PheB and NahH, have an amino acid identity of 85%. The metabolic and regulatory phenotypes of the wild-type and the mutant strain C70ΔpheB lacking pheB were evaluated. qRT-PCR data showed that in C70, the expression of pheB- and nahH-encoded C23O was induced by phenol and salicylate, respectively. We demonstrate that strain C70 is more effective in the degradation of phenol and salicylate, especially at higher substrate concentrations, when these compounds are present as a mixture; i.e., when both pathways are expressed. Moreover, NahH is able to substitute for the deleted PheB in phenol degradation when salicylate is also present in the growth medium. The appearance of a yellow intermediate 2-hydroxymuconic semialdehyde was followed by the accumulation of catechol in salicylate-containing growth medium, and lower expression levels and specific activities of the C23O of the sal operon were detected. However, the excretion of the toxic intermediate catechol to the growth medium was avoided when the growth medium was supplemented with phenol, seemingly due to the contribution of the second meta pathway encoded by the phe genes.


Asunto(s)
Proteínas Bacterianas/genética , Biodegradación Ambiental , Catecol 2,3-Dioxigenasa/genética , Fenol/metabolismo , Salicilatos/metabolismo , Secuencia de Bases , Catecol 2,3-Dioxigenasa/biosíntesis , Catecoles/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regiones Promotoras Genéticas , Pseudomonas pseudoalcaligenes/enzimología , Especificidad por Sustrato
7.
FEMS Microbiol Ecol ; 51(3): 363-73, 2005 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-16329884

RESUMEN

Denaturing gradient gel electrophoresis of amplified fragments of genes coding for 16S rRNA and for the largest subunit of multicomponent phenol hydroxylase (LmPH) was used to monitor the behaviour and relative abundance of mixed phenol-degrading bacterial populations (Pseudomonas mendocina PC1, P. fluorescens strains PC18, PC20 and PC24) during degradation of phenolic compounds in phenolic leachate- and oil-amended microcosms. The analysis indicated that specific bacterial populations were selected in each microcosm. The naphthalene-degrading strain PC20 was the dominant degrader in oil-amended microcosms and strain PC1 in phenolic leachate microcosms. Strain PC20 was not detectable after cultivation in phenolic leachate microcosms. Mixed bacterial populations in oil-amended microcosms aggregated and formed clumps, whereas the same bacteria had a planktonic mode of growth in phenolic leachate microcosms. Colony hybridisation data with catabolic gene specific probes indicated that, in leachate microcosms, the relative proportions of bacteria having meta (PC1) and ortho (PC24) pathways for degradation of phenol and p-cresol changed alternately. The shifts in the composition of mixed population indicated that different pathways of metabolism of aromatic compounds dominated and that this process is an optimised response to the contaminants present in microcosms.


Asunto(s)
Ecosistema , Petróleo/metabolismo , Fenoles/metabolismo , Pseudomonas fluorescens/crecimiento & desarrollo , Pseudomonas/crecimiento & desarrollo , Biodegradación Ambiental , Medios de Cultivo , ADN Bacteriano/análisis , ADN Ribosómico/análisis , Electroforesis/métodos , Oxigenasas de Función Mixta/genética , Datos de Secuencia Molecular , Plancton/clasificación , Plancton/genética , Plancton/crecimiento & desarrollo , Plancton/metabolismo , Reacción en Cadena de la Polimerasa , Pseudomonas/clasificación , Pseudomonas/genética , Pseudomonas/metabolismo , Pseudomonas fluorescens/clasificación , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , ARN Ribosómico 16S/genética
8.
Mar Pollut Bull ; 101(2): 507-16, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26541986

RESUMEN

Formation of specific oil degrading bacterial communities in diesel fuel, crude oil, heptane and hexadecane supplemented microcosms of the Baltic Sea surface water samples was revealed. The 475 sequences from constructed alkane hydroxylase alkB gene clone libraries were grouped into 30 OPFs. The two largest groups were most similar to Pedobacter sp. (245 from 475) and Limnobacter sp. (112 from 475) alkB gene sequences. From 56 alkane-degrading bacterial strains 41 belonged to the Pseudomonas spp. and 8 to the Rhodococcus spp. having redundant alkB genes. Together 68 alkB gene sequences were identified. These genes grouped into 20 OPFs, half of them being specific only to the isolated strains. Altogether 543 diverse alkB genes were characterized in the brackish Baltic Sea water; some of them representing novel lineages having very low sequence identities with corresponding genes of the reference strains.


Asunto(s)
Bacterias/metabolismo , Citocromo P-450 CYP4A/genética , Genes Bacterianos , Agua de Mar/microbiología , Alcanos/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Gasolina , Petróleo/metabolismo , Filogenia , Rhodococcus/genética
9.
Environ Sci Pollut Res Int ; Spec No 1: 19-26, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12638744

RESUMEN

The biodegradation of 3,4, 2,4, 2,3, 2,6 and 3,5-dimethylphenol in combination with phenol and p-cresol by axenic and mixed cultures of bacteria was investigated. The strains, which degrade phenol and p-cresol through different catabolic pathways, were isolated from river water continuously polluted with phenolic compounds of leachate of oil shale semicoke ash heaps. The proper research of degradation of 2,4 and 3,4-dimethylphenol in multinutrient environments was performed. The degradation of phenolic compounds from mixtures indicated a flux of substrates into different catabolic pathways. Catechol 2,3-dioxygenase activity was induced by dimethylphenols in Pseudomonas mendocina PC1, where meta cleavage pathway was functional during the degradation of p-cresol. In the case of strains PC18 and PC24 of P. fluorescens, the degradation of p-cresol occurred via the protocatechuate ortho pathway and the key enzyme of this pathway, p-cresol methylhydroxylase, was also induced by dimethylphenols. 2,4 and 3,4-dimethylphenols were converted into the dead-end products 4-hydroxy-3-methylbenzoic acid and 4-hydroxy-2-methylbenzoic acid. In the degradation of 3,4-dimethylphenol, the transient accumulation of 4-hydroxy-2-methylbenzaldehyde repressed the consumption of phenol from substrate mixtures. A mixed culture of strains with different catabolic types made it possible to overcome the incompatibilities at degradation of studied substrate mixtures.


Asunto(s)
Fenoles/metabolismo , Pseudomonas/fisiología , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Cresoles/química
10.
Microbiol Res ; 168(7): 415-27, 2013 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-23510642

RESUMEN

The coastal waters of the Baltic Sea are constantly threatened by oil spills, due to the extensive transportation of oil products across the sea. To characterise the hydrocarbon-degrading bacterial community of this marine area, microcosm experiments on diesel fuel, crude oil and shale oil were performed. Analysis of these microcosms, using alkane monooxygenase (alkB) and 16S rRNA marker genes in PCR-DGGE experiments, demonstrated that substrate type and concentration strongly influence species composition and the occurrence of alkB genes in respective oil degrading bacterial communities. Gammaproteobacteria (particularly the genus Pseudomonas) and Alphaproteobacteria were dominant in all microcosms treated with oils. All alkB genes carried by bacterial isolates (40 strains), and 8 of the 11 major DGGE bands from the microcosms, had more than 95% sequence identity with the alkB genes of Pseudomonas fluorescens. However, the closest relatives of the majority of sequences (54 sequences from 79) of the alkB gene library from initially collected seawater DNA were Actinobacteria. alkB gene expression, induced by hexadecane, was recorded in isolated bacterial strains. Thus, complementary culture dependent and independent methods provided a more accurate picture about the complex seawater microbial communities of the Baltic Sea.


Asunto(s)
Bacterias/aislamiento & purificación , Biodiversidad , Ecosistema , Agua de Mar/microbiología , Bacterias/clasificación , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/genética , Citocromo P-450 CYP4A/genética , Gasolina/análisis , Datos de Secuencia Molecular , Petróleo/análisis , Filogenia
11.
Syst Appl Microbiol ; 36(8): 525-32, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24012239

RESUMEN

A set of phenol-degrading strains of a collection of bacteria isolated from Baltic Sea surface water was screened for the presence of two key catabolic genes coding for phenol hydroxylases and catechol 2,3-dioxygenases. The multicomponent phenol hydroxylase (LmPH) gene was detected in 70 out of 92 strains studied, and 41 strains among these LmPH(+) phenol-degraders were found to exhibit catechol 2,3-dioxygenase (C23O) activity. Comparative phylogenetic analyses of LmPH and C23O sequences from 56 representative strains were performed. The studied strains were mostly affiliated to the genera Pseudomonas and Acinetobacter. However, the study also widened the range of phenol-degraders by including the genus Limnobacter. Furthermore, using a next generation sequencing approach, the LmPH genes of Limnobacter strains were found to be the most prevalent ones in the microbial community of the Baltic Sea surface water. Four different Limnobacter strains having almost identical 16S rRNA gene sequences (99%) and similar physiological properties formed separate phylogenetic clusters of LmPH and C23O genes in the respective phylogenetic trees.


Asunto(s)
Burkholderiaceae/clasificación , Burkholderiaceae/aislamiento & purificación , Catecol 2,3-Dioxigenasa/genética , Redes y Vías Metabólicas , Oxigenasas de Función Mixta/genética , Fenoles/metabolismo , Agua de Mar/microbiología , Acinetobacter/clasificación , Acinetobacter/enzimología , Acinetobacter/genética , Acinetobacter/aislamiento & purificación , Biotransformación , Burkholderiaceae/enzimología , Burkholderiaceae/genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Filogenia , Pseudomonas/clasificación , Pseudomonas/enzimología , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
12.
FEMS Microbiol Ecol ; 72(3): 464-75, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20370825

RESUMEN

p-Cresol methylhydroxylase (PCMH), a key enzyme responsible for the catabolism of p-cresol via the protocatechuate ortho pathway, was used as a tool to characterize catabolic differences between phenol- and p-cresol-degrading Pseudomonas fluore-scens strains PC18 and PC24. Although both strains catabolize p-cresol using PCMH, different whole-cell kinetic parameters for this compound were revealed. Affinity for the substrate and the specific growth rate were higher in PC18, whereas maximum p-cresol tolerance was higher in PC24. In addition, PCMH of strain PC18 was induced during growth on phenol. In both strains, the pchACXF operon, which encodes p-hydroxybenzaldehyde dehydrogenase and PCMH, was sequenced. Transcriptional regulation of these operons by PchR, a putative sigma(54)-dependent regulator, was shown. Although the promoters of these operons resembled sigma(54)-controlled promoters, they differed from the consensus sequence by having T instead of C at position -12. Complementation assays confirmed that the amino acid sequence differences of the PchR regulators between the two strains studied led to different effector-binding capabilities of these proteins: (1) phenol was a more efficient effector for PchR of PC18 than p-cresol, (2) phenol did not activate the regulator of PC24, and (3) both regulators responded similarly to p-cresol.


Asunto(s)
Oxigenasas de Función Mixta/genética , Familia de Multigenes , Operón , Pseudomonas fluorescens/genética , Secuencia de Aminoácidos , Cresoles/metabolismo , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Oxigenasas de Función Mixta/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Fenol/metabolismo , Regiones Promotoras Genéticas , Pseudomonas fluorescens/enzimología , Pseudomonas fluorescens/crecimiento & desarrollo , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad por Sustrato , Transcripción Genética
13.
Biodegradation ; 19(5): 759-69, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18283541

RESUMEN

Phenol-degrading pseudomonads possessing different phenol hydroxylases (PH) were evaluated by the values of apparent half-saturation constant for phenol-oxygenating activity (K ( S )), maximum specific growth rate (mu (max)), lag-time length (lambda), inhibition constant (K ( I )) and growth yield factor (Y ( X/S )). Strains of the same PH type showed similar kinetic parameters: single-component PH (sPH) harbouring strains had higher values of K ( S ) and lower values of mu (max) than the strains having multicomponent PH (mPH). However, the values of K ( I ) and the dependencies of the lag-time length on initial phenol concentration were strain-specific. The elevated ratio between specific activities of catechol 1,2-dioxygenase (C12O) and muconate cycloisomerase in sPH-strains caused irreversible accumulation of a high amount of exogenous cis,cis-muconate (CCM) which resulted in decreased Y ( X/S ) values. Co-presence of sPH and mPH genes did not give the strains PC16 and P69 any extra advantage and according to determined kinetic parameters only one PH was active during phenol degradation. At the same time simultaneous functioning of catechol ortho and meta cleavage pathways (strain PC20) resulted in higher mu (max) and Y ( X/S ) values. Evaluation of strains showed that the type of PH determined the efficiency of phenol degradation, whereas the tolerance to elevated phenol concentrations was strain-specific.


Asunto(s)
Oxigenasas de Función Mixta/metabolismo , Fenoles/metabolismo , Pseudomonas/metabolismo , Cinética , Pseudomonas/enzimología , Pseudomonas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA