Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mar Drugs ; 21(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36976232

RESUMEN

Brown macroalgae are an important source of polysaccharides, mainly fucose-containing sulphated polysaccharides (FCSPs), associated with several biological activities. However, the structural diversity and structure-function relationships for their bioactivities are still undisclosed. Thus, the aim of this work was to characterize the chemical structure of water-soluble Saccharina latissima polysaccharides and evaluate their immunostimulatory and hypocholesterolemic activities, helping to pinpoint a structure-activity relationship. Alginate, laminarans (F1, neutral glucose-rich polysaccharides), and two fractions (F2 and F3) of FCSPs (negatively charged) were studied. Whereas F2 is rich in uronic acids (45 mol%) and fucose (29 mol%), F3 is rich in fucose (59 mol%) and galactose (21 mol%). These two fractions of FCSPs showed immunostimulatory activity on B lymphocytes, which could be associated with the presence of sulphate groups. Only F2 exhibited a significant effect in reductions in in vitro cholesterol's bioaccessibility attributed to the sequestration of bile salts. Therefore, S. latissima FCSPs were shown to have potential as immunostimulatory and hypocholesterolemic functional ingredients, where their content in uronic acids and sulphation seem to be relevant for the bioactive and healthy properties.


Asunto(s)
Laminaria , Phaeophyceae , Fucosa/química , Agua , Phaeophyceae/química , Polisacáridos/farmacología , Polisacáridos/química , Sulfatos , Ácidos Urónicos
2.
PLoS Pathog ; 16(2): e1008311, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32040500

RESUMEN

Pseudomonas aeruginosa is one of the leading causes of nosocomial pneumonia and its associated mortality. Moreover, extensively drug-resistant high-risk clones are globally widespread, presenting a major challenge to the healthcare systems. Despite this, no vaccine is available against this high-concerning pathogen. Here we tested immunogenicity and protective efficacy of an experimental live vaccine against P. aeruginosa pneumonia, consisting of an auxotrophic strain which lacks the key enzyme involved in D-glutamate biosynthesis, a structural component of the bacterial cell wall. As the amounts of free D-glutamate in vivo are trace substances in most cases, blockage of the cell wall synthesis occurs, compromising the growth of this strain, but not its immunogenic properties. Indeed, when delivered intranasally, this vaccine stimulated production of systemic and mucosal antibodies, induced effector memory, central memory and IL-17A-producing CD4+ T cells, and recruited neutrophils and mononuclear phagocytes into the airway mucosa. A significant improvement in mice survival after lung infection caused by ExoU-producing PAO1 and PA14 strains was observed. Nearly one third of the mice infected with the XDR high-risk clone ST235 were also protected. These findings highlight the potential of this vaccine for the control of acute pneumonia caused by this bacterial pathogen.


Asunto(s)
Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Vacunas Atenuadas/inmunología , Administración Intranasal , Animales , Anticuerpos Antibacterianos/inmunología , Femenino , Inmunidad Mucosa , Masculino , Ratones , Ratones Endogámicos BALB C , Neumonía Bacteriana/inmunología , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad , Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/inmunología , Vacunas Atenuadas/farmacología
3.
Proc Natl Acad Sci U S A ; 115(20): E4651-E4660, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29720442

RESUMEN

Mucosal T lymphocytes from patients with ulcerative colitis (UC) were previously shown to display a deficiency in branched N-glycosylation associated with disease severity. However, whether this glycosylation pathway shapes the course of the T cell response constituting a targeted-specific mechanism in UC remains largely unknown. In this study, we demonstrated that metabolic supplementation of ex vivo mucosal T cells from patients with active UC with N-acetylglucosamine (GlcNAc) resulted in enhancement of branched N-glycosylation in the T cell receptor (TCR), leading to suppression of T cell growth, inhibition of the T helper 1 (Th1)/Th17 immune response, and controlled T cell activity. We further demonstrated that mouse models displaying a deficiency in the branched N-glycosylation pathway (MGAT5-/-, MGAT5+/-) exhibited increased susceptibility to severe forms of colitis and early-onset disease. Importantly, the treatment of these mice with GlcNAc reduced disease severity and suppressed disease progression due to a controlled T cell-mediated immune response at the intestinal mucosa. In conclusion, our human ex vivo and preclinical results demonstrate the targeted-specific immunomodulatory properties of this simple glycan, proposing a therapeutic approach for patients with UC.


Asunto(s)
Acetilglucosamina/farmacología , Linfocitos T CD4-Positivos/inmunología , Colitis Ulcerosa/inmunología , N-Acetilglucosaminiltransferasas/fisiología , Polisacáridos/metabolismo , Inmunidad Adaptativa , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Estudios de Casos y Controles , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Citocinas/metabolismo , Glicosilación , Humanos , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Antígenos de Linfocitos T/metabolismo
5.
Infect Immun ; 84(10): 2933-43, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27481237

RESUMEN

Poly-N-acetylglucosamine (PNAG) is a major component of the Staphylococcus epidermidis biofilm extracellular matrix. However, it is not yet clear how this polysaccharide impacts the host immune response and infection-associated pathology. Faster neutrophil recruitment and bacterial clearance were observed in mice challenged intraperitoneally with S. epidermidis biofilm cells of the PNAG-producing 9142 strain than in mice similarly challenged with the isogenic PNAG-defective M10 mutant. Moreover, intraperitoneal priming with 9142 cells exacerbated liver inflammatory pathology induced by a subsequent intravenous S. epidermidis challenge, compared to priming with M10 cells. The 9142-primed mice had elevated splenic CD4(+) T cells producing gamma interferon and interleukin-17A, indicating that PNAG promoted cell-mediated immunity. Curiously, despite having more marked liver tissue pathology, 9142-primed mice also had splenic T regulatory cells with greater suppressive activity than those of their M10-primed counterparts. By showing that PNAG production by S. epidermidis biofilm cells exacerbates host inflammatory pathology, these results together suggest that this polysaccharide contributes to the clinical features associated with biofilm-derived infections.


Asunto(s)
Acetilglucosamina/metabolismo , Epidermis/metabolismo , Inmunidad Celular/fisiología , Infecciones Estafilocócicas/fisiopatología , Staphylococcus epidermidis/fisiología , Análisis de Varianza , Animales , Biopelículas , Linfocitos T CD4-Positivos/fisiología , Citocinas/análisis , Citometría de Flujo , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Bazo/citología
6.
Hum Mol Genet ; 23(9): 2416-27, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24334766

RESUMEN

The incidence of inflammatory bowel disease is increasing worldwide and the underlying molecular mechanisms are far from being fully elucidated. Herein, we evaluated the role of N-glycosylation dysregulation in T cells as a key mechanism in the ulcerative colitis (UC) pathogenesis. The evaluation of the branched N-glycosylation levels and profile of intestinal T cell receptor (TCR) were assessed in colonic biopsies from UC patients and healthy controls. Expression alterations of the glycosyltransferase gene MGAT5 were also evaluated. We demonstrated that UC patients exhibit a dysregulation of TCR branched N-glycosylation on lamina propria T lymphocytes. Patients with severe UC showed the most pronounced defect on N-glycan branching in T cells. Moreover, UC patients showed a significant reduction of MGAT5 gene transcription in T lymphocytes. In this study, we disclose for the first time that a deficiency in branched N-glycosylation on TCR due to a reduced MGAT5 gene expression is a new molecular mechanism underlying UC pathogenesis, being a potential novel biomarker with promising clinical and therapeutic applications.


Asunto(s)
Colitis Ulcerosa/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Colitis Ulcerosa/genética , Femenino , Glicosilación , Humanos , Masculino , Persona de Mediana Edad , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Linfocitos T/metabolismo
7.
Immunology ; 145(2): 242-57, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25581844

RESUMEN

The adipose tissue can make important contributions to immune function. Nevertheless, only a limited number of reports have investigated in lean hosts the immune response elicited in this tissue upon infection. Previous studies suggested that the intracellular protozoan Neospora caninum might affect adipose tissue physiology. Therefore, we investigated in mice challenged with this protozoan if immune cell populations within adipose tissue of different anatomical locations could be differently affected. Early in infection, parasites were detected in the adipose tissue and by 7 days of infection increased numbers of macrophages, regulatory T (Treg) cells and T-bet(+) cells were observed in gonadal, mesenteric, omental and subcutaneous adipose tissue. Increased expression of interferon-γ was also detected in gonadal adipose tissue of infected mice. Two months after infection, parasite DNA was no longer detected in these tissues, but T helper type 1 (Th1) cell numbers remained above control levels in the infected mice. Moreover, the Th1/Treg cell ratio was higher than that of controls in the mesenteric and subcutaneous adipose tissue. Interestingly, chronically infected mice presented a marked increase of serum leptin, a molecule that plays a role in energy balance regulation as well as in promoting Th1-type immune responses. Altogether, we show that an apicomplexa parasitic infection influences immune cellular composition of adipose tissue throughout the body as well as adipokine production, still noticed at a chronic phase of infection when parasites were already cleared from that particular tissue. This strengthens the emerging view that infections can have long-term consequences for the physiology of adipose tissue.


Asunto(s)
Tejido Adiposo/inmunología , Coccidiosis/inmunología , Macrófagos/inmunología , Neospora/inmunología , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Adipoquinas/genética , Adipoquinas/inmunología , Tejido Adiposo/parasitología , Tejido Adiposo/patología , Animales , Coccidiosis/genética , Coccidiosis/patología , Inmunidad Celular/genética , Interferón gamma/genética , Interferón gamma/inmunología , Macrófagos/patología , Ratones , Ratones Noqueados , Linfocitos T Reguladores/patología , Células TH1/patología
8.
Electrophoresis ; 36(9-10): 1228-33, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25782040

RESUMEN

Saliva is essential to interact with microorganisms in the oral cavity. Therefore, the interest in saliva antimicrobial properties is on the rise. Here, we used an immunoproteomic approach, based on protein separation of Staphylococcus epidermidis biofilms by 2DE, followed by Western-blotting, to compare human serum and saliva reactivity profile. A total of 17 proteins were identified by MALDI-TOF/TOF. Serum and saliva presented a distinct pattern of immunoreactive proteins. Our results suggest that saliva seems to have higher propensity to react against S. epidermidis proteins with oxidoreductase activity and proteins involved with L-serine metabolic processes. We show that saliva was a powerful tool for the identification of potential S. epidermidis biofilms proteins.


Asunto(s)
Proteínas Bacterianas/análisis , Biopelículas , Proteínas Sanguíneas/análisis , Proteínas y Péptidos Salivales/análisis , Staphylococcus epidermidis/inmunología , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/inmunología , Proteínas Sanguíneas/metabolismo , Electroforesis en Gel Bidimensional , Humanos , Saliva , Proteínas y Péptidos Salivales/química , Proteínas y Péptidos Salivales/inmunología , Proteínas y Péptidos Salivales/metabolismo , Staphylococcus epidermidis/química , Staphylococcus epidermidis/metabolismo
9.
Mol Pharm ; 12(6): 1970-9, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25879919

RESUMEN

Glycol chitosan nanogels have been widely used in gene, drug, and contrast agent delivery in an effort to improve disease diagnosis and treatment. Herein, we evaluate the internalization mechanisms and intracellular fate of previously described glycol chitosan nanogels decorated with folate to target the folate receptor. Uptake of the folate-decorated nanogel was impaired by free folate, suggesting competitive inhibition and shared internalization mechanisms via the folate receptor. Nanogel uptake was shown to occur mainly through flotillin-1 and Cdc42-dependent endocytosis. This was determined by inhibition of uptake reduction observed upon siRNA depletion of these two proteins and the pathways that they regulate. The data also suggest the involvement of the actin cytoskeleton in nanogel uptake via macropinocytosis. After 7 h of incubation with HeLa cells, approximately half of the nanogel population was localized in endolysosomal compartments, whereas the remaining 50% of the material was in undefined regions of the cytoplasm. Glycol chitosan nanogels may thus have potential as drug delivery vectors for targeting different intracellular compartments.


Asunto(s)
Quitosano/química , Ácido Fólico/química , Polietilenglicoles/química , Polietileneimina/química , ARN Interferente Pequeño/genética , Western Blotting , Electroforesis en Gel de Poliacrilamida , Endocitosis/fisiología , Citometría de Flujo , Células HeLa , Humanos , Nanogeles
10.
Appl Microbiol Biotechnol ; 99(6): 2751-62, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25672847

RESUMEN

Staphylococcus epidermidis is an important nosocomial bacterium among carriers of indwelling medical devices, since it has a strong ability to form biofilms. The presence of dormant bacteria within a biofilm is one of the factors that contribute to biofilm antibiotic tolerance and immune evasion. Here, we provide a detailed characterization of the quantitative proteomic profile of S. epidermidis biofilms with different proportions of dormant bacteria. A total of 427 and 409 proteins were identified by label-free and label-based quantitative methodologies, respectively. From these, 29 proteins were found to be differentially expressed between S. epidermidis biofilms with prevented and induced dormancy. Proteins overexpressed in S. epidermidis with prevented dormancy were associated with ribosome synthesis pathway, which reflects the metabolic state of dormant bacteria. In the opposite, underexpressed proteins were related to catalytic activity and ion binding, with involvement in purine, arginine, and proline metabolism. Additionally, GTPase activity seems to be enhanced in S. epidermidis biofilm with induced dormancy. The role of magnesium in dormancy modulation was further investigated with bioinformatics tool based in predicted interactions. The main molecular function of proteins, which strongly interact with magnesium, was nucleic acid binding. Different proteomic strategies allowed to obtain similar results and evidenced that prevented dormancy led to an expression of a markedly different repertoire of proteins in comparison to the one of dormant biofilms.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Proteoma/metabolismo , Staphylococcus epidermidis/metabolismo , Biología Computacional , Electroforesis en Gel de Poliacrilamida , Magnesio/metabolismo , Espectrometría de Masas en Tándem
11.
Appl Microbiol Biotechnol ; 99(18): 7417-31, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26205520

RESUMEN

The dawn of a new Proteomics era, just over a decade ago, allowed for large-scale protein profiling studies that have been applied in the identification of distinctive molecular cell signatures. Proteomics provides a powerful approach for identifying and studying these multiple molecular markers in a vast array of biological systems, whether focusing on basic biological research, diagnosis, therapeutics, or systems biology. This is a continuously expanding field that relies on the combination of different methodologies and current advances, both technological and analytical, which have led to an explosion of protein signatures and biomarker candidates. But how are these biological markers obtained? And, most importantly, what can we learn from them? Herein, we briefly overview the currently available approaches for obtaining relevant information at the proteome level, while noting the current and future roles of both traditional and modern proteomics. Moreover, we provide some considerations on how the development of powerful and robust bioinformatics tools will greatly benefit high-throughput proteomics. Such strategies are of the utmost importance in the rapidly emerging field of immunoproteomics, which may play a key role in the identification of antigens with diagnostic and/or therapeutic potential and in the development of new vaccines. Finally, we consider the present limitations in the discovery of new signatures and biomarkers and speculate on how such hurdles may be overcome, while also offering a prospect for the next few years in what could be one of the most significant strategies in translational medicine research.


Asunto(s)
Proteoma/análisis , Proteómica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos
12.
Mediators Inflamm ; 2015: 460610, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25691808

RESUMEN

AMP dephosphorylation via ecto-5'-nucleotidase/CD73 is the rate limiting step to generate extracellular adenosine (ADO) from released adenine nucleotides. ADO, via A2A receptors (A2ARs), is a potent modulator of neuromuscular and immunological responses. The pivotal role of ecto-5'-nucleotidase/CD73, in controlling extracellular ADO formation, prompted us to investigate its role in a rat model of experimental autoimmune myasthenia gravis (EAMG). Results show that CD4(+)CD25(+)FoxP3(+) regulatory T cells express lower amounts of ecto-5'-nucleotidase/CD73 as compared to controls. Reduction of endogenous ADO formation might explain why proliferation of CD4(+) T cells failed upon blocking A2A receptors activation with ZM241385 or adenosine deaminase in EAMG animals. Deficits in ADO also contribute to neuromuscular transmission failure in EAMG rats. Rehabilitation of A2AR-mediated immune suppression and facilitation of transmitter release were observed by incubating the cells with the nucleoside precursor, AMP. These findings, together with the characteristic increase in serum adenosine deaminase activity of MG patients, strengthen our hypothesis that the adenosinergic pathway may be dysfunctional in EAMG. Given that endogenous ADO formation is balanced by ecto-5'-nucleotidase/CD73 activity and that A2ARs exert a dual role to restore use-dependent neurocompetence and immune suppression in myasthenics, we hypothesize that stimulation of the two mechanisms may have therapeutic potential in MG.


Asunto(s)
5'-Nucleotidasa/metabolismo , Adenosina Desaminasa/sangre , Adenosina/metabolismo , Miastenia Gravis/enzimología , Miastenia Gravis/metabolismo , 5'-Nucleotidasa/deficiencia , Adenosina Desaminasa/deficiencia , Animales , Femenino , Contracción Muscular/genética , Contracción Muscular/inmunología , Contracción Muscular/fisiología , Miastenia Gravis/inmunología , Ratas , Ratas Wistar , Transmisión Sináptica/genética , Linfocitos T Reguladores/metabolismo
13.
Immunology ; 141(2): 256-67, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24128071

RESUMEN

Neospora caninum is an Apicomplexa parasite that in the last two decades was acknowledged as the main pathogenic agent responsible for economic losses in the cattle industry. In the present study, the effectiveness of intranasal immunization with N. caninum membrane antigens plus CpG adjuvant was assessed in a murine model of intragastrically established neosporosis. Immunized mice presented a lower parasitic burden in the brain on infection with 5 × 10(7) tachyzoites, showing that significant protection was achieved by this immunization strategy. Intestinal IgA antibodies raised by immunization markedly agglutinated live N. caninum tachyzoites whereas previous opsonization with IgG antibodies purified from immunized mice sera reduced parasite survival within macrophage cells. Although an IgG1 : IgG2a ratio < 1 was detected in the immunized mice before and after infection, indicative of a predominant T helper type 1 immune response, no increased production of interferon-γ was detected in the spleen or mesenteric lymph nodes of the immunized mice. Altogether, these results show that mucosal immunization with N. caninum membrane proteins plus CpG adjuvant protect against intragastrically established neosporosis and indicate that parasite-specific mucosal and circulating antibodies have a protective role against this parasitic infection.


Asunto(s)
Antígenos de Protozoos/inmunología , Coccidiosis/prevención & control , Inmunización , Mucosa Intestinal/inmunología , Neospora/inmunología , Administración Intranasal , Animales , Citocinas/biosíntesis , Femenino , Inmunoglobulina A/biosíntesis , Inmunoglobulina G/sangre , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos/farmacología
14.
Appl Microbiol Biotechnol ; 98(6): 2585-96, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24504458

RESUMEN

The proportion of dormant bacteria within Staphylococcus epidermidis biofilms may determine its inflammatory profile. Previously, we have shown that S. epidermidis biofilms with higher proportions of dormant bacteria have reduced activation of murine macrophages. RNA-sequencing was used to identify the major transcriptomic differences between S. epidermidis biofilms with different proportions of dormant bacteria. To accomplish this goal, we used an in vitro model where magnesium allowed modulation of the proportion of dormant bacteria within S. epidermidis biofilms. Significant differences were found in the expression of 147 genes. A detailed analysis of the results was performed based on direct and functional gene interactions. Biological processes among the differentially expressed genes were mainly related to oxidation-reduction processes and acetyl-CoA metabolic processes. Gene set enrichment revealed that the translation process is related to the proportion of dormant bacteria. Transcription of mRNAs involved in oxidation-reduction processes was associated with higher proportions of dormant bacteria within S. epidermidis biofilm. Moreover, the pH of the culture medium did not change after the addition of magnesium, and genes related to magnesium transport did not seem to impact entrance of bacterial cells into dormancy.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Staphylococcus epidermidis/fisiología , Medios de Cultivo/química , Concentración de Iones de Hidrógeno , Magnesio/metabolismo , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/metabolismo
15.
J Basic Microbiol ; 54(7): 750-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23686681

RESUMEN

Biofilm formation is recognized as the main virulence factor in a variety of chronic infections. In vitro evaluation of biofilm formation is often achieved by quantification of viable or total cells. However, these methods depend on biofilm disruption, which is often achieved by vortexing or sonication. In this study, we investigated the effects of sonication on the elimination of Staphylococcus epidermidis cell clusters from biofilms grown over time, and quantification was performed by three distinct analytical techniques. Even when a higher number of sonication cycles was used, some stable cell clusters remained in the samples obtained from 48- and 72-h-old biofilms, interfering with the quantification of sessile bacteria by plate counting. On the other hand, the fluorescence microscopy automatic counting system allowed proper quantification of biofilm samples that had undergone any of the described sonication cycles, suggesting that this is a more accurate method for assessing the cell concentration in S. epidermidis biofilms, especially in mature biofilms.


Asunto(s)
Carga Bacteriana/normas , Biopelículas/crecimiento & desarrollo , Staphylococcus epidermidis/crecimiento & desarrollo , Automatización de Laboratorios , Viabilidad Microbiana , Microscopía Fluorescente , Sonicación
16.
J Med Microbiol ; 73(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743043

RESUMEN

Introduction. Staphylococcus epidermidis biofilms are one of the major causes of bloodstream infections related to the use of medical devices. The diagnosis of these infections is challenging, delaying their treatment and resulting in increased morbidity and mortality rates. As such, it is urgent to characterize the mechanisms employed by this bacterium to endure antibiotic treatments and the response of the host immune system, to develop more effective therapeutic strategies. In several bacterial species, the gene codY was shown to encode a protein that regulates the expression of genes involved in biofilm formation and immune evasion. Additionally, in a previous study, our group generated evidence indicating that codY is involved in the emergence of viable but non-culturable (VBNC) cells in S. epidermidis.Gap statement/Hypothesis. As such, we hypothesized that the gene codY has have an important role in this bacterium virulence.Aim. This study aimed to assess, for the first time, the impact of the deletion of the gene codY in S. epidermidis virulence, namely, in antibiotic susceptibility, biofilm formation, VBNC state emergence and in vitro host immune system response.Methodology. Using an allelic replacement strategy, we constructed and then characterized an S. epidermidis strain lacking codY, in regards to biofilm and VBNC cell formation, susceptibility to antibiotics as well as their role in the interaction with human blood and plasma. Additionally, we investigate whether the codY gene can impact the activation of innate immune cells by evaluating the production of both pro- and anti-inflammatory cytokines by THP-1 macrophages.Results. We demonstrated that the deletion of the gene codY resulted in biofilms with less c.f.u. counts and fewer VBNC cells. Furthermore, we show that although WT and mutant cells were similarly internalized in vitro by human macrophages, a stronger cytokine response was elicited by the mutant in a toll-like receptor 4-dependent manner.Conclusion. Our results indicate that codY contributes to S. epidermidis virulence, which in turn may have an impact on our ability to manage the biofilm-associated infections caused by this bacterium.


Asunto(s)
Proteínas Bacterianas , Biopelículas , Citocinas , Macrófagos , Staphylococcus epidermidis , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/fisiología , Biopelículas/crecimiento & desarrollo , Humanos , Macrófagos/microbiología , Macrófagos/inmunología , Citocinas/metabolismo , Citocinas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Infecciones Estafilocócicas/microbiología , Eliminación de Gen , Virulencia , Viabilidad Microbiana
17.
Sci Rep ; 14(1): 8444, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600105

RESUMEN

In bovines few studies addressed the contribution of adipose tissue to the host immune response to infection. Here we evaluated the in vitro response of bovine adipose tissue stromal vascular fraction (SVF) cells to the protozoan parasite Neospora caninum, using live and freeze-killed tachyzoites. Live N. caninum induced the production of IL-6, IL-1ß and IL-10 by SVF cells isolated from subcutaneous adipose tissue (SAT), while in mesenteric adipose tissue (MAT) SVF cell cultures only IL-1ß and IL-10 production was increased, showing slight distinct responses between adipose tissue depots. Whereas a clear IL-8 increase was detected in peripheral blood leucocytes (PBL) culture supernatants in response to live N. caninum, no such increase was observed in SAT or MAT SVF cell cultures. Nevertheless, in response to LPS, increased IL-8 levels were detected in all cell cultures. IL-10 levels were always increased in response to stimulation (live, freeze-killed N. caninum and LPS). Overall, our results show that bovine adipose tissue SVF cells produce cytokines in response to N. caninum and can therefore be putative contributors to the host immune response against this parasite.


Asunto(s)
Coccidiosis , Neospora , Animales , Bovinos , Interleucina-10 , Interleucina-8 , Lipopolisacáridos/farmacología , Fracción Vascular Estromal , Citocinas , Tejido Adiposo , Coccidiosis/parasitología
18.
PLoS Pathog ; 7(11): e1002363, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22114550

RESUMEN

Group B Streptococcus (GBS) is the leading cause of neonatal pneumonia, septicemia, and meningitis. We have previously shown that in adult mice GBS glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an extracellular virulence factor that induces production of the immunosuppressive cytokine interleukin-10 (IL-10) by the host early upon bacterial infection. Here, we investigate whether immunity to neonatal GBS infection could be achieved through maternal vaccination against bacterial GAPDH. Female BALB/c mice were immunized with rGAPDH and the progeny was infected with a lethal inoculum of GBS strains. Neonatal mice born from mothers immunized with rGAPDH were protected against infection with GBS strains, including the ST-17 highly virulent clone. A similar protective effect was observed in newborns passively immunized with anti-rGAPDH IgG antibodies, or F(ab')(2) fragments, indicating that protection achieved with rGAPDH vaccination is independent of opsonophagocytic killing of bacteria. Protection against lethal GBS infection through rGAPDH maternal vaccination was due to neutralization of IL-10 production soon after infection. Consequently, IL-10 deficient (IL-10(-/-)) mice pups were as resistant to GBS infection as pups born from vaccinated mothers. We observed that protection was correlated with increased neutrophil trafficking to infected organs. Thus, anti-rGAPDH or anti-IL-10R treatment of mice pups before GBS infection resulted in increased neutrophil numbers and lower bacterial load in infected organs, as compared to newborn mice treated with the respective control antibodies. We showed that mothers immunized with rGAPDH produce neutralizing antibodies that are sufficient to decrease IL-10 production and induce neutrophil recruitment into infected tissues in newborn mice. These results uncover a novel mechanism for GBS virulence in a neonatal host that could be neutralized by vaccination or immunotherapy. As GBS GAPDH is a structurally conserved enzyme that is metabolically essential for bacterial growth in media containing glucose as the sole carbon source (i.e., the blood), this protein constitutes a powerful candidate for the development of a human vaccine against this pathogen.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas/inmunología , Inmunidad Materno-Adquirida/inmunología , Interleucina-10/antagonistas & inhibidores , Infiltración Neutrófila/inmunología , Infecciones Estreptocócicas/prevención & control , Streptococcus agalactiae/inmunología , Streptococcus agalactiae/patogenicidad , Animales , Animales Recién Nacidos , Femenino , Inmunización Pasiva , Interleucina-10/deficiencia , Interleucina-10/inmunología , Ratones , Ratones Endogámicos BALB C , Vacunación
19.
Vet Res ; 44: 69, 2013 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-23937079

RESUMEN

The murine model has been widely used to study the host immune response to Neospora caninum. However, in most studies, the intraperitoneal route was preferentially used to establish infection. Here, C57BL/6 mice were infected with N. caninum tachyzoites by the intragastric route, as it more closely resembles the natural route of infection through the gastrointestinal tract. The elicited T-cell mediated immune response was evaluated in the intestinal epithelium and mesenteric lymph nodes (MLN). Early upon the parasitic challenge, IL-12 production by conventional and plasmacytoid dendritic cells was increased in MLN. Accordingly, increased proportions and numbers of TCRαß+CD8+IFN-γ+ lymphocytes were detected, not only in the intestinal epithelium and MLN, but also in the spleen of the infected mice. In this organ, IFN-γ-producing TCRαß+CD4+ T cells were also found to increase in the infected mice, however later than CD8+ T cells. Interestingly, splenic and MLN CD4+CD25+ T cells sorted from infected mice presented a suppressive activity on in vitro T cell proliferation and cytokine production above that of control counterparts. These results altogether indicate that, by producing IFN-γ, TCRαß+CD8+ cells contribute for local and systemic host protection in the earliest days upon infection established through the gastrointestinal tract. Nevertheless, they also provide substantial evidence for a parasite-driven reinforcement of T regulatory cell function which may contribute for parasite persistence in the host and might represent an additional barrier to overcome towards effective vaccination.


Asunto(s)
Anticuerpos Antiprotozoarios/biosíntesis , Linfocitos T CD4-Positivos/metabolismo , Coccidiosis/inmunología , Inmunidad Mucosa , Ganglios Linfáticos/inmunología , Neospora/inmunología , Bazo/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Técnicas de Cultivo de Célula/veterinaria , Coccidiosis/parasitología , Femenino , Citometría de Flujo/veterinaria , Interleucina-12/biosíntesis , Estadios del Ciclo de Vida , Ganglios Linfáticos/parasitología , Ratones , Ratones Endogámicos C57BL , Neospora/crecimiento & desarrollo , Bazo/parasitología
20.
Nanomedicine ; 9(2): 159-73, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22772049

RESUMEN

Polymeric nanogels find a relevant field of application in the formulation of a new generation of therapeutic and preventive vaccines, aiming at the fine-tuned modulation of the immune response. Intrinsic properties of polymeric nanogels, such as material chemistry, size and shape, surface charge, and hydrophobicity or hydrophilicity, may be determining factors in shaping the induced immune response. These materials can thus work as synthetic adjuvants, which can also be conjugated with immunostimulants. Polymeric nanogels protect vaccine antigens from degradation in vivo and, surface-conjugated with antibodies or specific ligands, could increase active targeting specificity. This review covers the recent published data concerning the modulation of innate and adaptive immune responses by engineered polymeric nanogels and their potential application as delivery systems in vaccination. FROM THE CLINICAL EDITOR: In this review, the utility of polymeric nanogels is discussed as adjuvants and protective agents for enhanced vaccination with more robust immune response and a more uniform outcome.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Nanoestructuras/uso terapéutico , Polímeros/uso terapéutico , Vacunas/administración & dosificación , Inmunidad Adaptativa , Adyuvantes Inmunológicos/química , Animales , Humanos , Inmunidad Innata , Nanoestructuras/química , Polímeros/química , Vacunación/métodos , Vacunas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA