Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Syst Biol ; 17(6): e9864, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34132490

RESUMEN

Understanding stem cell regulatory circuits is the next challenge in plant biology, as these cells are essential for tissue growth and organ regeneration in response to stress. In the Arabidopsis primary root apex, stem cell-specific transcription factors BRAVO and WOX5 co-localize in the quiescent centre (QC) cells, where they commonly repress cell division so that these cells can act as a reservoir to replenish surrounding stem cells, yet their molecular connection remains unknown. Genetic and biochemical analysis indicates that BRAVO and WOX5 form a transcription factor complex that modulates gene expression in the QC cells to preserve overall root growth and architecture. Furthermore, by using mathematical modelling we establish that BRAVO uses the WOX5/BRAVO complex to promote WOX5 activity in the stem cells. Our results unveil the importance of transcriptional regulatory circuits in plant stem cell development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , División Celular , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Meristema/genética , Meristema/metabolismo , Nitrilos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
2.
J Cell Sci ; 131(2)2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29242230

RESUMEN

Stem cell regeneration is crucial for both cell turnover and tissue healing in multicellular organisms. In Arabidopsis roots, a reduced group of cells known as the quiescent center (QC) act as a cell reservoir for surrounding stem cells during both normal growth and in response to external damage. Although cells of the QC have a very low mitotic activity, plant hormones such as brassinosteroids (BRs) can promote QC divisions. Here, we used a tissue-specific strategy to investigate the spatial signaling requirements of BR-mediated QC divisions. We generated stem cell niche-specific receptor knockout lines by placing an artificial microRNA against BRI1 (BRASSINOSTEROID INSENSITIVE 1) under the control of the QC-specific promoter WOX5. Additionally, QC-specific knock-in lines for BRI1 and its downstream transcription factor BES1 (BRI1-EMS-SUPPRESOR1) were also created using the WOX5 promoter. By analyzing the roots of these lines, we show that BES1-mediated signaling cell-autonomously promotes QC divisions, that BRI1 is essential for sensing nearby inputs and triggering QC divisions and that DNA damage promotes BR-dependent paracrine signaling in the stem cell niche as a prerequisite to stem cell replenishment.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Comunicación Paracrina , Regeneración , Transducción de Señal , Nicho de Células Madre , Proteínas de Arabidopsis/metabolismo , Microambiente Celular , Daño del ADN , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/metabolismo , Meristema/citología , Meristema/metabolismo , Modelos Biológicos , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantones/citología , Plantones/metabolismo , Transcripción Genética
3.
Mol Syst Biol ; 14(1): e7687, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321184

RESUMEN

Plant roots grow due to cell division in the meristem and subsequent cell elongation and differentiation, a tightly coordinated process that ensures growth and adaptation to the changing environment. How the newly formed cells decide to stop elongating becoming fully differentiated is not yet understood. To address this question, we established a novel approach that combines the quantitative phenotypic variability of wild-type Arabidopsis roots with computational data from mathematical models. Our analyses reveal that primary root growth is consistent with a Sizer mechanism, in which cells sense their length and stop elongating when reaching a threshold value. The local expression of brassinosteroid receptors only in the meristem is sufficient to set this value. Analysis of roots insensitive to BR signaling and of roots with gibberellin biosynthesis inhibited suggests distinct roles of these hormones on cell expansion termination. Overall, our study underscores the value of using computational modeling together with quantitative data to understand root growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Modelos Teóricos , Arabidopsis/citología , Arabidopsis/metabolismo , Diferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Giberelinas/farmacología , Meristema/citología , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Fenotipo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
4.
J Exp Bot ; 67(17): 4951-61, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27511026

RESUMEN

Brassinosteroid (BR) hormones are important regulators of plant growth and development. Recent studies revealed the cell-specific role of BRs in vascular and stem cell development by the action of cell-specific BR receptor complexes and downstream signaling components in Arabidopsis thaliana Despite the importance of spatiotemporal regulation of hormone signaling in the control of plant vascular development, the mechanisms that confer cellular specificity to BR receptors within the vascular cells are not yet understood. The present work shows that BRI1-like receptor genes 1 and 3 (BRL1 and BRL3) are differently regulated by BRs. By using promoter deletion constructs of BRL1 and BRL3 fused to GFP/GUS (green fluorescent protein/ß-glucuronidase) reporters in Arabidopsis, analysis of their cell-specific expression and regulation by BRs in the root apex has been carried out. We found that BRL3 expression is finely modulated by BRs in different root cell types, whereas the location of BRL1 appears to be independent of this hormone. Physiological and genetic analysis show a BR-dependent expression of BRL3 in the root meristem. In particular, BRL3 expression requires active BES1, a central transcriptional effector within the BRI1 pathway. ChIP analysis showed that BES1 directly binds to the BRRE present in the BRL3 promoter region, modulating its transcription in different subsets of cells of the root apex. Overall our study reveals the existence of a cell-specific negative feedback loop from BRI1-mediated BES1 transcription factor to BRL3 in phloem cells, while contributing to a general understanding of the spatial control of steroid signaling in plant development.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas Nucleares/fisiología , Raíces de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Arabidopsis/fisiología , Brasinoesteroides/metabolismo , Proteínas de Unión al ADN , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/fisiología , Receptores de Superficie Celular/fisiología
5.
Plant Physiol ; 164(3): 1527-41, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24492333

RESUMEN

Protein phosphatases with Kelch-like domains (PPKL) are members of the phosphoprotein phosphatases family present only in plants and alveolates. PPKL have been described as positive effectors of brassinosteroid (BR) signaling in plants. Most of the evidence supporting this role has been gathered using one of the four homologs in Arabidopsis (Arabidopsis thaliana), brassinosteroid-insensitive1 suppressor (BSU1). We reappraised the roles of the other three members of the family, BSL1, BSL2, and BSL3, through phylogenetic, functional, and genetic analyses. We show that BSL1 and BSL2/BSL3 belong to two ancient evolutionary clades that have been highly conserved in land plants. In contrast, BSU1-type genes are exclusively found in the Brassicaceae and display a remarkable sequence divergence, even among closely related species. Simultaneous loss of function of the close paralogs BSL2 and BSL3 brings about a peculiar array of phenotypic alterations, but with marginal effects on BR signaling; loss of function of BSL1 is, in turn, phenotypically silent. Still, the products of these three genes account for the bulk of PPKL-related activity in Arabidopsis and together have an essential role in the early stages of development that BSU1 is unable to supplement. Our results underline the functional relevance of BSL phosphatases in plants and suggest that BSL2/BSL3 and BSU1 may have contrasting effects on BR signaling. Given that BSU1-type genes have likely undergone a functional shift and are phylogenetically restricted, we caution that inferences based on these genes to the whole family or to other species may be misleading.


Asunto(s)
Evolución Molecular , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Plantas/enzimología , Plantas/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Brasinoesteroides/farmacología , Flores/anatomía & histología , Flores/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Mutación/genética , Fenotipo , Filogenia , Proteínas de Plantas/metabolismo , Plantas/efectos de los fármacos , Estructura Terciaria de Proteína , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología
6.
Development ; 138(5): 849-59, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21270057

RESUMEN

Brassinosteroids (BRs) play crucial roles in plant growth and development. Previous studies have shown that BRs promote cell elongation in vegetative organs in several plant species, but their contribution to meristem homeostasis remains unexplored. Our analyses report that both loss- and gain-of-function BR-related mutants in Arabidopsis thaliana have reduced meristem size, indicating that balanced BR signalling is needed for the optimal root growth. In the BR-insensitive bri1-116 mutant, the expression pattern of the cell division markers CYCB1;1, ICK2/KRP2 and KNOLLE revealed that a decreased mitotic activity accounts for the reduced meristem size; accordingly, this defect could be overcome by the overexpression of CYCD3;1. The activity of the quiescent centre (QC) was low in the short roots of bri1-116, as reported by cell type-specific markers and differentiation phenotypes of distal stem cells. Conversely, plants treated with the most active BR, brassinolide, or mutants with enhanced BR signalling, such as bes1-D, show a premature cell cycle exit that results in early differentiation of meristematic cells, which also negatively influence meristem size and overall root growth. In the stem cell niche, BRs promote the QC renewal and differentiation of distal stem cells. Together, our results provide evidence that BRs play a regulatory role in the control of cell-cycle progression and differentiation in the Arabidopsis root meristem.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , División Celular , Colestanoles/metabolismo , Meristema/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Esteroides Heterocíclicos/metabolismo , Arabidopsis/citología , Brasinoesteroides , Diferenciación Celular , Meristema/citología , Mitosis , Proteínas Mutantes , Fitosteroles , Células Madre
7.
Nat Chem Biol ; 8(6): 583-9, 2012 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-22561410

RESUMEN

Receptor-mediated endocytosis is an integral part of signal transduction as it mediates signal attenuation and provides spatial and temporal dimensions to signaling events. One of the best-studied leucine-rich repeat receptor-like kinases in plants, BRASSINOSTEROID INSENSITIVE 1 (BRI1), perceives its ligand, the brassinosteroid (BR) hormone, at the cell surface and is constitutively endocytosed. However, the importance of endocytosis for BR signaling remains unclear. Here we developed a bioactive, fluorescent BR analog, Alexa Fluor 647-castasterone (AFCS), and visualized the endocytosis of BRI1-AFCS complexes in living Arabidopsis thaliana cells. Impairment of endocytosis dependent on clathrin and the guanine nucleotide exchange factor for ARF GTPases (ARF-GEF) GNOM enhanced BR signaling by retaining active BRI1-ligand complexes at the plasma membrane. Increasing the trans-Golgi network/early endosome pool of BRI1-BR complexes did not affect BR signaling. Our findings provide what is to our knowledge the first visualization of receptor-ligand complexes in plants and reveal clathrin- and ARF-GEF-dependent endocytic regulation of BR signaling from the plasma membrane.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Carbocianinas/química , Membrana Celular/metabolismo , Colestanoles/metabolismo , Endocitosis , Colorantes Fluorescentes/química , Proteínas Quinasas/metabolismo , Transducción de Señal , Arabidopsis/enzimología , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Brasinoesteroides/química , Brasinoesteroides/metabolismo , Membrana Celular/ultraestructura , Colestanoles/química , Relación Dosis-Respuesta a Droga , Endosomas/enzimología , Endosomas/metabolismo , Endosomas/ultraestructura , Proteínas Fluorescentes Verdes/genética , Cinética , Meristema/enzimología , Meristema/metabolismo , Meristema/ultraestructura , Microscopía Confocal , Estructura Molecular , Reguladores del Crecimiento de las Plantas , Proteínas Quinasas/genética , Transporte de Proteínas , Plantones/enzimología , Plantones/metabolismo , Plantones/ultraestructura , Vacuolas/enzimología , Vacuolas/metabolismo , Vacuolas/ultraestructura
8.
bioRxiv ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38187728

RESUMEN

Oxygen (O2), a dominant element in the atmosphere and essential for most life on Earth, is produced by the photosynthetic oxidation of water. However, metabolic activity can cause accumulation of reactive O2 species (ROS) and severe cell damage. To identify and characterize mechanisms enabling cells to cope with ROS, we performed a high-throughput O2 sensitivity screen on a genome-wide insertional mutant library of the unicellular alga Chlamydomonas reinhardtii. This screen led to identification of a gene encoding a protein designated Rubisco methyltransferase 2 (RMT2). Although homologous to methyltransferases, RMT2 has not been experimentally demonstrated to have methyltransferase activity. Furthermore, the rmt2 mutant was not compromised for Rubisco (first enzyme of Calvin-Benson Cycle) levels but did exhibit a marked decrease in accumulation/activity of photosystem I (PSI), which causes light sensitivity, with much less of an impact on other photosynthetic complexes. This mutant also shows increased accumulation of Ycf3 and Ycf4, proteins critical for PSI assembly. Rescue of the mutant phenotype with a wild-type (WT) copy of RMT2 fused to the mNeonGreen fluorophore indicates that the protein localizes to the chloroplast and appears to be enriched in/around the pyrenoid, an intrachloroplast compartment present in many algae that is packed with Rubisco and potentially hypoxic. These results indicate that RMT2 serves an important role in PSI biogenesis which, although still speculative, may be enriched around or within the pyrenoid.

9.
Nat Genet ; 54(5): 705-714, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513725

RESUMEN

Most genes in photosynthetic organisms remain functionally uncharacterized. Here, using a barcoded mutant library of the model eukaryotic alga Chlamydomonas reinhardtii, we determined the phenotypes of more than 58,000 mutants under more than 121 different environmental growth conditions and chemical treatments. A total of 59% of genes are represented by at least one mutant that showed a phenotype, providing clues to the functions of thousands of genes. Mutant phenotypic profiles place uncharacterized genes into functional pathways such as DNA repair, photosynthesis, the CO2-concentrating mechanism and ciliogenesis. We illustrate the value of this resource by validating phenotypes and gene functions, including three new components of an actin cytoskeleton defense pathway. The data also inform phenotype discovery in land plants; mutants in Arabidopsis thaliana genes exhibit phenotypes similar to those we observed in their Chlamydomonas homologs. We anticipate that this resource will guide the functional characterization of genes across the tree of life.


Asunto(s)
Arabidopsis , Chlamydomonas reinhardtii , Arabidopsis/genética , Chlamydomonas reinhardtii/genética , Eucariontes , Fenotipo , Fotosíntesis/genética
10.
BMC Genomics ; 10: 467, 2009 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-19821986

RESUMEN

BACKGROUND: Melon (Cucumis melo) is a horticultural specie of significant nutritional value, which belongs to the Cucurbitaceae family, whose economic importance is second only to the Solanaceae. Its small genome of approx. 450 Mb coupled to the high genetic diversity has prompted the development of genetic tools in the last decade. However, the unprecedented existence of a transcriptomic approaches in melon, highlight the importance of designing new tools for high-throughput analysis of gene expression. RESULTS: We report the construction of an oligo-based microarray using a total of 17,510 unigenes derived from 33,418 high-quality melon ESTs. This chip is particularly enriched with genes that are expressed in fruit and during interaction with pathogens. Hybridizations for three independent experiments allowed the characterization of global gene expression profiles during fruit ripening, as well as in response to viral and fungal infections in plant cotyledons and roots, respectively. Microarray construction, statistical analyses and validation together with functional-enrichment analysis are presented in this study. CONCLUSION: The platform validation and enrichment analyses shown in our study indicate that this oligo-based microarray is amenable for future genetic and functional genomic studies of a wide range of experimental conditions in melon.


Asunto(s)
Cucumis melo/genética , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Cucumis melo/fisiología , ADN de Plantas/genética , Etiquetas de Secuencia Expresada , Frutas/genética , Frutas/fisiología , Biblioteca de Genes , Genes de Plantas , Genoma de Planta , Análisis de Secuencia de ADN
11.
Nat Genet ; 51(4): 627-635, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30886426

RESUMEN

Photosynthetic organisms provide food and energy for nearly all life on Earth, yet half of their protein-coding genes remain uncharacterized1,2. Characterization of these genes could be greatly accelerated by new genetic resources for unicellular organisms. Here we generated a genome-wide, indexed library of mapped insertion mutants for the unicellular alga Chlamydomonas reinhardtii. The 62,389 mutants in the library, covering 83% of nuclear protein-coding genes, are available to the community. Each mutant contains unique DNA barcodes, allowing the collection to be screened as a pool. We performed a genome-wide survey of genes required for photosynthesis, which identified 303 candidate genes. Characterization of one of these genes, the conserved predicted phosphatase-encoding gene CPL3, showed that it is important for accumulation of multiple photosynthetic protein complexes. Notably, 21 of the 43 higher-confidence genes are novel, opening new opportunities for advances in understanding of this biogeochemically fundamental process. This library will accelerate the characterization of thousands of genes in algae, plants, and animals.


Asunto(s)
Chlamydomonas reinhardtii/genética , Chlorophyta/genética , Eucariontes/genética , Mutación/genética , Fotosíntesis/genética , Biblioteca de Genes , Genoma/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Análisis de Secuencia de ADN/métodos
12.
Dev Cell ; 30(1): 36-47, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-24981610

RESUMEN

The quiescent center (QC) maintains the activity of the surrounding stem cells within the root stem cell niche, yet specific molecular players sustaining the low rate of QC cell division remain poorly understood. Here, we identified a R2R3-MYB transcription factor, BRAVO (BRASSINOSTEROIDS AT VASCULAR AND ORGANIZING CENTER), acting as a cell-specific repressor of QC divisions in the primary root of Arabidopsis. Ectopic BRAVO expression restricts overall root growth and ceases root regeneration upon damage of the stem cells, demonstrating the role of BRAVO in counteracting Brassinosteroid (BR)-mediated cell division in the QC cells. Interestingly, BR-regulated transcription factor BES1 (BRI1-EMS SUPRESSOR 1) directly represses and physically interacts with BRAVO in vivo, creating a switch that modulates QC divisions at the root stem cell niche. Together, our results define a mechanism for BR-mediated regulation of stem cell quiescence in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Brasinoesteroides/farmacología , Transducción de Señal/efectos de los fármacos , Nicho de Células Madre/efectos de los fármacos , Células Madre/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Biomarcadores/metabolismo , Western Blotting , División Celular , Proliferación Celular , Inmunoprecipitación de Cromatina , Ensayo de Inmunoadsorción Enzimática , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Inmunoprecipitación , Modelos Teóricos , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/efectos de los fármacos , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA