Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13538, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866909

RESUMEN

Although considered an evolutionary force responsible for shaping ecosystems and biodiversity, fires' natural cycle is being altered by human activities, increasing the odds of destructive megafire events. Here, we show that forest type modulates the responses of terrestrial mammals, from species to assemblage level, to a catastrophic megafire in the Brazilian Pantanal. We unraveled that mammalian richness was higher 1 year after fire passage compared to a pre-fire condition, which can be attributed to habitat modification caused by wildfires, attracting herbivores and open-area tolerant species. We observed changes in assemblage composition between burned/unburned sites, but no difference in mammalian richness or relative abundance. However, by partitioning the effects of burned area proportion per forest type (monospecific vs. polyspecific), we detected differential responses of mammals at several levels of organization, with pronounced declines in species richness and relative abundance in monospecific forests. Eighty-six percent of the species presented moderate to strong negative effects on their relative abundance, with an overall strong negative effect for the entire assemblage. Wildfires are predicted to be more frequent with climate and land use change, and if events analogous to Pantanal-2020 become recurrent, they might trigger regional beta diversity change, benefitting open-area tolerant species.


Asunto(s)
Biodiversidad , Bosques , Mamíferos , Incendios Forestales , Animales , Brasil , Ecosistema , Incendios
3.
Nat Commun ; 10(1): 4769, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31628318

RESUMEN

Pumas are the most widely distributed felid in the Western Hemisphere. Increasingly, however, human persecution and habitat loss are isolating puma populations. To explore the genomic consequences of this isolation, we assemble a draft puma genome and a geographically broad panel of resequenced individuals. We estimate that the lineage leading to present-day North American pumas diverged from South American lineages 300-100 thousand years ago. We find signatures of close inbreeding in geographically isolated North American populations, but also that tracts of homozygosity are rarely shared among these populations, suggesting that assisted gene flow would restore local genetic diversity. The genome of a Florida panther descended from translocated Central American individuals has long tracts of homozygosity despite recent outbreeding. This suggests that while translocations may introduce diversity, sustaining diversity in small and isolated populations will require either repeated translocations or restoration of landscape connectivity. Our approach provides a framework for genome-wide analyses that can be applied to the management of similarly small and isolated populations.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Endogamia/métodos , Puma/genética , Animales , Flujo Génico , Variación Genética , Genética de Población , Geografía , América del Norte , Filogenia , Puma/clasificación , América del Sur
4.
Sci Rep ; 7: 46112, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28387238

RESUMEN

Colossoma macropomum, or tambaqui, is the largest native Characiform species found in the Amazon and Orinoco river basins, yet few resources for genetic studies and the genetic improvement of tambaqui exist. In this study, we identified a large number of single-nucleotide polymorphisms (SNPs) for tambaqui and constructed a high-resolution genetic linkage map from a full-sib family of 124 individuals and their parents using the genotyping by sequencing method. In all, 68,584 SNPs were initially identified using minimum minor allele frequency (MAF) of 5%. Filtering parameters were used to select high-quality markers for linkage analysis. We selected 7,734 SNPs for linkage mapping, resulting in 27 linkage groups with a minimum logarithm of odds (LOD) of 8 and maximum recombination fraction of 0.35. The final genetic map contains 7,192 successfully mapped markers that span a total of 2,811 cM, with an average marker interval of 0.39 cM. Comparative genomic analysis between tambaqui and zebrafish revealed variable levels of genomic conservation across the 27 linkage groups which allowed for functional SNP annotations. The large-scale SNP discovery obtained here, allowed us to build a high-density linkage map in tambaqui, which will be useful to enhance genetic studies that can be applied in breeding programs.


Asunto(s)
Characiformes/genética , Mapeo Cromosómico , Técnicas de Genotipaje/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Polimorfismo de Nucleótido Simple/genética , Animales , Frecuencia de los Genes/genética , Ligamiento Genético , Marcadores Genéticos , Genómica , Anotación de Secuencia Molecular , Pez Cebra/genética
5.
J Exp Zool A Ecol Genet Physiol ; 309(10): 628-36, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18661469

RESUMEN

Broad-snouted caiman's (Caiman latirostris) geographic distribution comprises one of the widest latitudinal ranges among all crocodilians. In this study we analyzed the relationship between geographic distance (along the species latitudinal range) and genetic differentiation using DNA microsatellite loci developed for C. latirostris and Alligator mississippiensis. The results suggest that there is a consistent relationship between geographic distance and genetic differentiation; however, other biogeographical factors seem to be relevant. The Atlantic Chain (Serra do Mar) seems to be an effective geographic barrier, as well as the relatively narrow (< or =1.5 km) sea channel between Cardoso Island and the continent. In addition, coastal populations seem to have been well connected in recent geological time (Pleistocene 16,000 years ago) all along the eastern Brazilian coast. Further studies should focus on the São Francisco River drainage, which is still poorly known for this species.


Asunto(s)
Caimanes y Cocodrilos/genética , Variación Genética , Animales , Brasil , Frecuencia de los Genes , Genética de Población , Geografía , Heterocigoto , Repeticiones de Microsatélite/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA