Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(8): 4218-4227, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32034102

RESUMEN

When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area.


Asunto(s)
Flujo Génico , Variación Genética , Plantago/genética , Demografía , Especies Introducidas , Filogenia , Plantago/química
2.
Ecol Lett ; 24(11): 2378-2393, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34355467

RESUMEN

Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait-environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness.


Asunto(s)
Máscaras , Plantago , Adaptación Fisiológica , Biomasa , Fenotipo
3.
Oecologia ; 189(1): 243-253, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30467597

RESUMEN

Predictions of plant responses to global warming frequently ignore biotic interactions and intraspecific variation across geographical ranges. Benefactor species play an important role in plant communities by protecting other taxa from harsh environments, but the combined effects of warming and beneficiary species on their performance have been largely unexamined. We analyzed the joint effects of elevated temperature and neighbor removal on the benefactor plant Silene acaulis, in factorial experiments near its low- and high-latitude range limits in Europe. We recorded growth, probability of reproduction and fruit set during 3 years. The effects of enhanced temperature were positive near the northern limit and negative in the south for some performance measures. This pattern was stronger in the presence of neighbors, possibly due to differential thermal tolerances between S. acaulis and beneficiary species in each location. Neighbors generally had a negative or null impact on S. acaulis, in agreement with previous reviews of overall effects of plant-plant interactions on benefactors. However, small S. acaulis individuals in the north showed higher growth when surrounded by neighbors. Finally, the local habitat within each location influenced some effects of experimental treatments. Overall, we show that plant responses to rising temperatures may strongly depend on their position within the geographic range, and on species interactions. Our results also highlight the need to consider features of the interacting taxa, such as whether they are benefactor species, as well as local-scale environmental variation, to predict the joint effects of global warming and biotic interactions on species and communities.


Asunto(s)
Plantas , Silene , Clima , Ecosistema , Europa (Continente)
4.
Plant Physiol ; 172(2): 765-775, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27440756

RESUMEN

Global change is exerting a major effect on plant communities, altering their potential capacity for adaptation. Here, we aimed at unveiling mechanisms of adaptation to high altitude in an endemic long-lived monocarpic, Saxifraga longifolia, by combining demographic and physiological approaches. Plants from three altitudes (570, 1100, and 2100 m above sea level [a.s.l.]) were investigated in terms of leaf water and pigment contents, and activation of stress defense mechanisms. The influence of plant size on physiological performance and mortality was also investigated. Levels of photoprotective molecules (α-tocopherol, carotenoids, and anthocyanins) increased in response to high altitude (1100 relative to 570 m a.s.l.), which was paralleled by reduced soil and leaf water contents and increased ABA levels. The more demanding effect of high altitude on photoprotection was, however, partly abolished at very high altitudes (2100 m a.s.l.) due to improved soil water contents, with the exception of α-tocopherol accumulation. α-Tocopherol levels increased progressively at increasing altitudes, which paralleled with reductions in lipid peroxidation, thus suggesting plants from the highest altitude effectively withstood high light stress. Furthermore, mortality of juveniles was highest at the intermediate population, suggesting that drought stress was the main environmental driver of mortality of juveniles in this rocky plant species. Population structure and vital rates in the high population evidenced lower recruitment and mortality in juveniles, activation of clonal growth, and absence of plant size-dependent mortality. We conclude that, despite S. longifolia has evolved complex mechanisms of adaptation to altitude at the cellular, whole-plant and population levels, drought events may drive increased mortality in the framework of global change.


Asunto(s)
Adaptación Fisiológica , Altitud , Hojas de la Planta/fisiología , Saxifragaceae/fisiología , Ácido Abscísico/metabolismo , Antocianinas/metabolismo , Carotenoides/metabolismo , Ciclopentanos/metabolismo , Ecosistema , Luz , Oxilipinas/metabolismo , Pigmentos Biológicos/metabolismo , Hojas de la Planta/metabolismo , Ácido Salicílico/metabolismo , Saxifragaceae/metabolismo , Estaciones del Año , Suelo/química , España , Temperatura , Agua/metabolismo , alfa-Tocoferol/metabolismo
5.
Ecol Lett ; 18(11): 1139-1152, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26355390

RESUMEN

Most species are exposed to significant environmental gradients across their ranges, but vital rates (survival, growth, reproduction and recruitment) need not respond in the same direction to those gradients. Opposing vital rate trends across environments, a phenomenon that has been loosely called 'demographic compensation', may allow species to occupy larger geographical ranges and alter their responses to climate change. Yet the term has never been precisely defined, nor has its existence or strength been assessed for multiple species. Here, we provide a rigorous definition, and use it to develop a strong test for demographic compensation. By applying the test to data from 26 published, multi-population demographic studies of plants, we show that demographic compensation commonly occurs. We also investigate the mechanisms by which this phenomenon arises by assessing which demographic processes and life stages are most often involved. In addition, we quantify the effect of demographic compensation on variation in population growth rates across environmental gradients, a potentially important determinant of the size of a species' geographical range. Finally, we discuss the implications of demographic compensation for the responses of single populations and species' ranges to temporal environmental variation and to ongoing environmental trends, e.g. due to climate change.

6.
Ecology ; 94(6): 1378-88, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23923501

RESUMEN

Analyzing intraspecific variation in population dynamics in relation to environmental factors is crucial to understand the current and future distributions of plant species. Across ranges, peripheral populations are often expected to show lower and more temporally variable vital rates than central populations, although it remains unclear how much any differences in vital rates actually contribute to differences in population growth rates. Moreover, few demographic studies accounting for environmental stochasticity have been carried out both at continental and regional scales. In this study we calculated stochastic growth rates in five central and six northern peripheral populations of the widespread shortlived herb Plantago coronopus along the Atlantic Coast in Europe. To evaluate at two spatial scales how mean values and variability of vital rates (i.e., fecundity, recruitment, survival, growth, and shrinkage) contributed to the differences in stochastic growth rates, we performed Stochastic Life Table Response Experiment (SLTRE) analyses between and within central and peripheral regions. Additionally, we searched for correlations between vital rate contributions and local environmental conditions. Lower mean values and greater variability for some vital rates in peripheral than in central populations had an overall negative but nonsignificant effect on the stochastic growth rates in the periphery. Different life cycle components accounted for differences in population growth depending on spatial scale, although recruitment was the vital rate with the highest influence both between and within regions. Interestingly, the same pattern of differentiation among populations was found within central and peripheral areas: in both regions, one group of populations displayed positive contributions of growth and shrinkage and negative contributions of recruitment and survival; the opposite pattern was found in the remaining populations. These differences in vital rate contributions among populations within regions were correlated with precipitation regime, whereas at the continental scale, differences in contribution patterns were related to temperature. Altogether, our results show how populations of P. coronopus exhibit life cycle differences that may enable the species to persist in locations with widely varying environmental conditions. This demographic flexibility may help to explain the success of widespread plants across large and heterogeneous ranges.


Asunto(s)
Modelos Biológicos , Plantago/fisiología , Procesos Estocásticos , África , Asia , Demografía , Europa (Continente) , Tablas de Vida
7.
Biol Rev Camb Philos Soc ; 92(4): 1877-1909, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27891813

RESUMEN

The 'centre-periphery hypothesis' (CPH) is a long-standing postulate in ecology that states that genetic variation and demographic performance of a species decrease from the centre to the edge of its geographic range. This hypothesis is based on an assumed concordance between geographical peripherality and ecological marginality such that environmental conditions become harsher towards the limits of a species range. In this way, the CPH sets the stage for understanding the causes of distribution limits. To date, no study has examined conjointly the consistency of these postulates. In an extensive literature review we discuss the birth and development of the CPH and provide an assessment of the CPH by reviewing 248 empirical studies in the context of three main themes. First, a decrease in species occurrence towards their range limits was observed in 81% of studies, while only 51% demonstrated reduced abundance of individuals. A decline in genetic variation, increased differentiation among populations and higher rates of inbreeding were demonstrated by roughly one in two studies (47, 45 and 48%, respectively). However, demographic rates, size and population performance less often followed CPH expectations (20-30% of studies). We highlight the impact of important methodological, taxonomic, and biogeographical biases on such validation rates. Second, we found that geographic and ecological marginality gradients are not systematically concordant, which casts doubt on the reliability of a main assumption of the CPH. Finally, we attempt to disentangle the relative contribution of geographical, ecological and historical processes on the spatial distribution of genetic and demographic parameters. While ecological marginality gradients explain variation in species' demographic performance better than geographic gradients, contemporary and historical factors may contribute interactively to spatial patterns of genetic variation. We thereby propose a framework that integrates species' ecological niche characteristics together with current and past range structure to investigate spatial patterns of genetic and demographic variation across species ranges.


Asunto(s)
Distribución Animal/fisiología , Ecosistema , Flujo Génico , Variación Genética , Animales , Modelos Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA