Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Bacteriol ; 201(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30455283

RESUMEN

The Min system in Escherichia coli, consisting of MinC, MinD, and MinE proteins, regulates division site selection by preventing assembly of the FtsZ-ring (Z-ring) and exhibits polar oscillation in vivo MinC antagonizes FtsZ polymerization, and in vivo, the cellular location of MinC is controlled by a direct association with MinD at the membrane. To further understand the interactions of MinC with FtsZ and MinD, we performed a mutagenesis screen to identify substitutions in minC that are associated with defects in cell division. We identified amino acids in both the N- and C-domains of MinC that are important for direct interactions with FtsZ and MinD in vitro, as well as mutations that modify the observed in vivo oscillation of green fluorescent protein (GFP)-MinC. Our results indicate that there are two distinct surface-exposed sites on MinC that are important for direct interactions with FtsZ, one at a cleft on the surface of the N-domain and a second on the C-domain that is adjacent to the MinD interaction site. Mutation of either of these sites leads to slower oscillation of GFP-MinC in vivo, although the MinC mutant proteins are still capable of a direct interaction with MinD in phospholipid recruitment assays. Furthermore, we demonstrate that interactions between FtsZ and both sites of MinC identified here are important for assembly of FtsZ-MinC-MinD complexes and that the conserved C-terminal end of FtsZ is not required for MinC-MinD complex formation with GTP-dependent FtsZ polymers.IMPORTANCE Bacterial cell division proceeds through the coordinated assembly of the FtsZ-ring, or Z-ring, at the site of division. Assembly of the Z-ring requires polymerization of FtsZ, which is regulated by several proteins in the cell. In Escherichia coli, the Min system, which contains MinC, MinD, and MinE proteins, exhibits polar oscillation and inhibits the assembly of FtsZ at nonseptal locations. Here, we identify regions on the surface of MinC that are important for contacting FtsZ and destabilizing FtsZ polymers.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , División Celular , Proteínas del Citoesqueleto/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Análisis Mutacional de ADN , Proteínas de Escherichia coli/genética , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Proteínas de la Membrana/genética , Mutagénesis , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética
2.
Mol Microbiol ; 107(4): 558-576, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29280220

RESUMEN

Cell division in prokaryotes initiates with assembly of the Z-ring at midcell, which, in Escherichia coli, is tethered to the inner leaflet of the cytoplasmic membrane through a direct interaction with FtsA, a widely conserved actin homolog. The Z-ring is comprised of polymers of tubulin-like FtsZ and has been suggested to provide the force for constriction. Here, we demonstrate that FtsA exerts force on membranes causing redistribution of membrane architecture, robustly hydrolyzes ATP and directly engages FtsZ polymers in a reconstituted system. Phospholipid reorganization by FtsA occurs rapidly and is mediated by insertion of a C-terminal membrane targeting sequence (MTS) into the bilayer and further promoted by a nucleotide-dependent conformational change relayed to the MTS. FtsA also recruits FtsZ to phospholipid vesicles via a direct interaction with the FtsZ C-terminus and regulates FtsZ assembly kinetics. These results implicate the actin homolog FtsA in establishment of a Z-ring scaffold, while directly remodeling the membrane and provide mechanistic insight into localized cell wall remodeling, invagination and constriction at the onset of division.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/ultraestructura , Proteínas de Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/genética , División Celular/fisiología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Vesículas Extracelulares/metabolismo , Hidrólisis , Gotas Lipídicas/metabolismo , Mutagénesis Sitio-Dirigida , Fosfolípidos/metabolismo
3.
Hum Mol Genet ; 22(8): 1525-38, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23307925

RESUMEN

No effective treatment exists for patients with X-linked myotubular myopathy (XLMTM), a fatal congenital muscle disease caused by deficiency of the lipid phosphatase, myotubularin. The Mtm1δ4 and Mtm1 p.R69C mice model severely and moderately symptomatic XLMTM, respectively, due to differences in the degree of myotubularin deficiency. Contractile function of intact extensor digitorum longus (EDL) and soleus muscles from Mtm1δ4 mice, which produce no myotubularin, is markedly impaired. Contractile forces generated by chemically skinned single fiber preparations from Mtm1δ4 muscle were largely preserved, indicating that weakness was largely due to impaired excitation contraction coupling. Mtm1 p.R69C mice, which produce small amounts of myotubularin, showed impaired contractile function only in EDL muscles. Short-term replacement of myotubularin with a prototypical targeted protein replacement agent (3E10Fv-MTM1) in Mtm1δ4 mice improved contractile function and muscle pathology. These promising findings suggest that even low levels of myotubularin protein replacement can improve the muscle weakness and reverse the pathology that characterizes XLMTM.


Asunto(s)
Terapia de Reemplazo Enzimático , Miopatías Estructurales Congénitas/patología , Miopatías Estructurales Congénitas/terapia , Proteínas Tirosina Fosfatasas no Receptoras/genética , Animales , Modelos Animales de Enfermedad , Fatiga/metabolismo , Fatiga/fisiopatología , Femenino , Humanos , Ratones , Debilidad Muscular/genética , Debilidad Muscular/terapia , Músculo Esquelético/fisiopatología , Músculos/enzimología , Músculos/metabolismo , Músculos/patología , Miopatías Estructurales Congénitas/enzimología , Miopatías Estructurales Congénitas/genética , Proteínas Tirosina Fosfatasas no Receptoras/biosíntesis , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia
4.
Am J Pathol ; 184(6): 1831-42, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24726641

RESUMEN

X-linked myotubular myopathy is a congenital myopathy caused by deficiency of myotubularin. Patients often present with severe perinatal weakness, requiring mechanical ventilation to prevent death from respiratory failure. We recently reported that an activin receptor type IIB inhibitor produced hypertrophy of type 2b myofibers and modest increases of strength and life span in the severely myopathic Mtm1δ4 mouse model of X-linked myotubular myopathy. We have now performed a similar study in the less severely symptomatic Mtm1 p.R69C mouse in hopes of finding greater treatment efficacy. Activin receptor type IIB inhibitor treatment of Mtm1 p.R69C animals produced behavioral and histological evidence of hypertrophy in gastrocnemius muscles but not in quadriceps or triceps. The ability of the muscles to respond to activin receptor type IIB inhibitor treatment correlated with treatment-induced increases in satellite cell number and several muscle-specific abnormalities of hypertrophic signaling. Treatment-responsive Mtm1 p.R69C gastrocnemius muscles displayed lower levels of phosphorylated ribosomal protein S6 and higher levels of phosphorylated eukaryotic elongation factor 2 kinase than were observed in Mtm1 p.R69C quadriceps muscle or in muscles from wild-type littermates. Hypertrophy in the Mtm1 p.R69C gastrocnemius muscle was associated with increased levels of phosphorylated ribosomal protein S6. Our findings indicate that muscle-, fiber type-, and mutation-specific factors affect the response to hypertrophic therapies that will be important to assess in future therapeutic trials.


Asunto(s)
Receptores de Activinas Tipo II/metabolismo , Proteínas Musculares/metabolismo , Miopatías Estructurales Congénitas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Transducción de Señal , Receptores de Activinas Tipo II/genética , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Mutantes , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Proto-Oncogénicas c-akt/genética , Células Satélite del Músculo Esquelético/patología
5.
Am J Pathol ; 181(3): 961-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22841819

RESUMEN

X-linked myotubular myopathy is a severe congenital myopathy caused by deficiency of the lipid phosphatase, myotubularin. Recent studies of human tissue and animal models have discovered structural and physiological abnormalities in myotubularin-deficient muscle, but the impact of myotubularin deficiency on myogenic stem cells within muscles is unclear. In the present study, we evaluated the viability, proliferative capacity, and in vivo engraftment of myogenic cells obtained from severely symptomatic (Mtm1δ4) myotubularin-deficient mice. Mtm1δ4 muscle contains fewer myogenic cells than wild-type (WT) littermates, and the number of myogenic cells decreases with age. The behavior of Mtm1δ4 myoblasts is also abnormal, because they engraft poorly into C57BL/6/Rag1null/mdx5cv mice and display decreased proliferation and increased apoptosis compared with WT myoblasts. Evaluation of Mtm1δ4 animals at 21 and 42 days of life detected fewer satellite cells in Mtm1δ4 muscle compared with WT littermates, and the decrease in satellite cells correlated with progression of disease. In addition, analysis of WT and Mtm1δ4 regeneration after injury detected similar abnormalities of satellite cell function, with fewer satellite cells, fewer dividing cells, and increased apoptotic cells in Mtm1δ4 muscle. These studies demonstrate specific abnormalities in myogenic cell number and behavior that may relate to the progression of disease in myotubularin deficiency, and may also be used to develop in vitro assays by which novel treatment strategies can be assessed.


Asunto(s)
Apoptosis , Mioblastos/patología , Mioblastos/trasplante , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Animales , Recuento de Células , Proliferación Celular , Supervivencia Celular , Progresión de la Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/lesiones , Músculo Esquelético/patología , Mioblastos/metabolismo , Factor de Transcripción PAX7/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/patología
6.
Protein Sci ; 31(5): e4306, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35481648

RESUMEN

The essential bacterial division protein in Escherichia coli, FtsZ, assembles into the FtsZ-ring at midcell and recruits other proteins to the division site to promote septation. A region of the FtsZ amino acid sequence that links the conserved polymerization domain to a C-terminal protein interaction site was predicted to be intrinsically disordered and has been implicated in modulating spacing and architectural arrangements of FtsZ filaments. While the majority of cell division proteins that directly bind to FtsZ engage either the polymerization domain or the C-terminal interaction site, ClpX, the recognition and unfolding component of the bacterial ClpXP proteasome, has a secondary interaction with the predicted intrinsically disordered region (IDR) of FtsZ when FtsZ is polymerized. Here, we use NMR spectroscopy and reconstituted degradation reactions in vitro to demonstrate that this linker region is indeed disordered in solution and, further, that amino acids in the IDR of FtsZ enhance the degradation in polymer-guided interactions.


Asunto(s)
Proteínas de Escherichia coli , Péptido Hidrolasas , Proteínas Bacterianas/química , Proteínas del Citoesqueleto/metabolismo , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Elementos de Facilitación Genéticos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Péptido Hidrolasas/metabolismo , Polímeros/metabolismo
7.
Elife ; 72018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30277210

RESUMEN

Binary fission has been well studied in rod-shaped bacteria, but the mechanisms underlying cell division in spherical bacteria are poorly understood. Rod-shaped bacteria harbor regulatory proteins that place and remodel the division machinery during cytokinesis. In the spherical human pathogen Staphylococcus aureus, we found that the essential protein GpsB localizes to mid-cell during cell division and co-constricts with the division machinery. Depletion of GpsB arrested cell division and led to cell lysis, whereas overproduction of GpsB inhibited cell division and led to the formation of enlarged cells. We report that S. aureus GpsB, unlike other Firmicutes GpsB orthologs, directly interacts with the core divisome component FtsZ. GpsB bundles and organizes FtsZ filaments and also stimulates the GTPase activity of FtsZ. We propose that GpsB orchestrates the initial stabilization of the Z-ring at the onset of cell division and participates in the subsequent remodeling of the divisome during cytokinesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Staphylococcus aureus/metabolismo , Factores de Virulencia/metabolismo , Proteínas Bacterianas/genética , División Celular/genética , Proteínas del Citoesqueleto/genética , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Genes Esenciales/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Microscopía Fluorescente , Unión Proteica , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Imagen de Lapso de Tiempo/métodos , Factores de Virulencia/genética
8.
PLoS One ; 12(1): e0170505, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28114338

RESUMEN

During bacterial cell division a dynamic protein structure called the Z-ring assembles at the septum. The major protein in the Z-ring in Escherichia coli is FtsZ, a tubulin homolog that polymerizes with GTP. FtsZ is degraded by the two-component ATP-dependent protease ClpXP. Two regions of FtsZ, located outside of the polymerization domain in the unstructured linker and at the C-terminus, are important for specific recognition and degradation by ClpXP. We engineered a synthetic substrate containing green fluorescent protein (Gfp) fused to an extended FtsZ C-terminal tail (residues 317-383), including the unstructured linker and the C-terminal conserved region, but not the polymerization domain, and showed that it is sufficient to target a non-native substrate for degradation in vitro. To determine if FtsZ degradation regulates Z-ring assembly during division, we expressed a full length Gfp-FtsZ fusion protein in wild type and clp deficient strains and monitored fluorescent Z-rings. In cells deleted for clpX or clpP, or cells expressing protease-defective mutant protein ClpP(S97A), Z-rings appear normal; however, after photobleaching a region of the Z-ring, fluorescence recovers ~70% more slowly in cells without functional ClpXP than in wild type cells. Gfp-FtsZ(R379E), which is defective for degradation by ClpXP, also assembles into Z-rings that recover fluorescence ~2-fold more slowly than Z-rings containing Gfp-FtsZ. In vitro, ClpXP cooperatively degrades and disassembles FtsZ polymers. These results demonstrate that ClpXP is a regulator of Z-ring dynamics and that the regulation is proteolysis-dependent. Our results further show that FtsZ-interacting proteins in E. coli fine-tune Z-ring dynamics.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Biopolímeros/metabolismo , División Celular , Colorantes Fluorescentes/metabolismo , Proteolisis
9.
Front Mol Biosci ; 4: 26, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28523271

RESUMEN

ClpX is a member of the Clp/Hsp100 family of ATP-dependent chaperones and partners with ClpP, a compartmentalized protease, to degrade protein substrates bearing specific recognition signals. ClpX targets specific proteins for degradation directly or with substrate-specific adaptor proteins. Native substrates of ClpXP include proteins that form large oligomeric assemblies, such as MuA, FtsZ, and Dps in Escherichia coli. To remodel large oligomeric substrates, ClpX utilizes multivalent targeting strategies and discriminates between assembled and unassembled substrate conformations. Although ClpX and ClpP are known to associate with protein aggregates in E. coli, a potential role for ClpXP in disaggregation remains poorly characterized. Here, we discuss strategies utilized by ClpX to recognize native and non-native protein aggregates and the mechanisms by which ClpX alone, and with ClpP, remodels the conformations of various aggregates. We show that ClpX promotes the disassembly and reactivation of aggregated Gfp-ssrA through specific substrate remodeling. In the presence of ClpP, ClpX promotes disassembly and degradation of aggregated substrates bearing specific ClpX recognition signals, including heat-aggregated Gfp-ssrA, as well as polymeric and heat-aggregated FtsZ, which is a native ClpXP substrate in E. coli. Finally, we show that ClpX is present in insoluble aggregates and prevents the accumulation of thermal FtsZ aggregates in vivo, suggesting that ClpXP participates in the management of aggregates bearing ClpX recognition signals.

10.
FEBS Lett ; 589(2): 201-6, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25497011

RESUMEN

The Min system of proteins, consisting of MinC, MinD and MinE, is essential for normal cell division in Escherichia coli. MinC forms a polar gradient to restrict placement of the division septum to midcell. MinC localization occurs through a direct interaction with MinD, a membrane-associating Par-like ATPase. MinE stimulates ATP hydrolysis by MinD, thereby releasing MinD from the membrane. Here, we show that MinD forms polymers with MinC and ATP without the addition of phospholipids. The topological regulator MinE induces disassembly of MinCD polymers. Two MinD mutant proteins, MinD(K11A) and MinD(ΔMTS15), are unable to form polymers with MinC.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/ultraestructura , Escherichia coli/química , Escherichia coli/citología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestructura , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/ultraestructura , Viabilidad Microbiana , Microscopía Electrónica de Transmisión , Modelos Moleculares , Multimerización de Proteína , Estructura Cuaternaria de Proteína
11.
PLoS One ; 9(4): e94964, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24722340

RESUMEN

ClpXP is a two-component ATP-dependent protease that unfolds and degrades proteins bearing specific recognition signals. One substrate degraded by Escherichia coli ClpXP is FtsZ, an essential cell division protein. FtsZ forms polymers that assemble into a large ring-like structure, termed the Z-ring, during cell division at the site of constriction. The FtsZ monomer is composed of an N-terminal polymerization domain, an unstructured linker region and a C-terminal conserved region. To better understand substrate selection by ClpXP, we engineered FtsZ mutant proteins containing amino acid substitutions or deletions near the FtsZ C-terminus. We identified two discrete regions of FtsZ important for degradation of both FtsZ monomers and polymers by ClpXP in vitro. One region is located 30 residues away from the C-terminus in the unstructured linker region that connects the polymerization domain to the C-terminal region. The other region is near the FtsZ C-terminus and partially overlaps the recognition sites for several other FtsZ-interacting proteins, including MinC, ZipA and FtsA. Mutation of either region caused the protein to be more stable and mutation of both caused an additive effect, suggesting that both regions are important. We also observed that in vitro MinC inhibits degradation of FtsZ by ClpXP, suggesting that some of the same residues in the C-terminal site that are important for degradation by ClpXP are important for binding MinC.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Endopeptidasa Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Proteínas del Citoesqueleto/genética , Endopeptidasa Clp/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Unión Proteica , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA