Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS Pathog ; 17(11): e1010120, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34843593

RESUMEN

Horizontal gene transfer is widespread in insects bearing intracellular symbionts. Horizontally transferred genes (HTGs) are presumably involved in amino acid synthesis in sternorrhynchan insects. However, their role in insect-symbiont interactions remains largely unknown. We found symbionts Portiera, Hamiltonella and Rickettsia possess most genes involved in lysine synthesis in the whitefly Bemisia tabaci MEAM1 although their genomes are reduced. Hamiltonella maintains a nearly complete lysine synthesis pathway. In contrast, Portiera and Rickettsia require the complementation of whitefly HTGs for lysine synthesis and have lysE, encoding a lysine exporter. Furthermore, each horizontally transferred lysine gene of ten B. tabaci cryptic species shares an evolutionary origin. We demonstrated that Hamiltonella did not alter the titers of Portiera and Rickettsia or lysine gene expression of Portiera, Rickettsia and whiteflies. Hamiltonella also did not impact on lysine levels or protein localization in bacteriocytes harboring Portiera and ovaries infected with Rickettsia. Complementation with whitefly lysine synthesis HTGs rescued E. coli lysine gene knockout mutants. Silencing whitefly lysA in whiteflies harboring Hamiltonella reduced lysine levels, adult fecundity and titers of Portiera and Rickettsia without influencing the expression of Hamiltonella lysA. Furthermore, silencing whitefly lysA in whiteflies lacking Hamiltonella reduced lysine levels, adult fecundity and titers of Portiera and Rickettsia in ovarioles. Therefore, we, for the first time, demonstrated an essential amino acid lysine synthesized through HTGs is important for whitefly reproduction and fitness of both obligate and facultative symbionts, and it illustrates the mutual dependence between whitefly and its two symbionts. Collectively, this study reveals that acquisition of horizontally transferred lysine genes contributes to coadaptation and coevolution between B. tabaci and its symbionts.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Halomonadaceae/fisiología , Hemípteros/microbiología , Lisina/metabolismo , Rickettsia/fisiología , Simbiosis , Animales , Hemípteros/genética , Hemípteros/crecimiento & desarrollo , Lisina/genética
2.
Funct Integr Genomics ; 19(2): 363-371, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30483906

RESUMEN

Next-generation DNA sequencing technologies, such as RNA-Seq, currently dominate genome-wide gene expression studies. A standard approach to analyse this data requires mapping sequence reads to a reference and counting the number of reads which map to each gene. However, for many transcriptome studies, a suitable reference genome is unavailable, especially for meta-transcriptome studies which assay gene expression from mixed populations of organisms. Where a reference is unavailable, it is possible to generate a reference by the de novo assembly of the sequence reads. However, the high cost of generating high-coverage data for de novo assembly hinders this approach and more importantly the accurate assembly of such data is challenging, especially for meta-transcriptome data, and resulting assemblies frequently suffer from collapsed regions or chimeric sequences. As an alternative to the standard reference mapping approach, we have developed a k-mer-based analysis pipeline (DiffKAP) to identify differentially expressed reads between RNA-Seq datasets without the requirement for a reference. We compared the DiffKAP approach with the traditional Tophat/Cuffdiff method using RNA-Seq data from soybean, which has a suitable reference genome. We subsequently examined differential gene expression for a coral meta-transcriptome where no reference is available, and validated the results using qRT-PCR. We conclude that DiffKAP is an accurate method to study differential gene expression in complex meta-transcriptomes without the requirement of a reference genome.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Metagenoma , Análisis de Secuencia de ARN/métodos , Transcriptoma , Algoritmos , Animales , Antozoos/genética , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica/normas , Estándares de Referencia , Análisis de Secuencia de ARN/normas
3.
Physiol Mol Plant Pathol ; 105: 54-66, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31007374

RESUMEN

In vitro culture offers many advantages for yam germplasm conservation, propagation and international distribution. However, low virus titres in the generated tissues pose a challenge for reliable virus detection, which makes it difficult to ensure that planting material is virus-free. In this study, we evaluated next-generation sequencing (NGS) for virus detection following yam propagation using a robust tissue culture methodology. We detected and assembled the genomes of novel isolates of already characterised viral species of the genera Badnavirus and Potyvirus, confirming the utility of NGS in diagnosing yam viruses and contributing towards the safe distribution of germplasm.

4.
Plant J ; 90(5): 1007-1013, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28231383

RESUMEN

There is an increasing understanding that variation in gene presence-absence plays an important role in the heritability of agronomic traits; however, there have been relatively few studies on variation in gene presence-absence in crop species. Hexaploid wheat is one of the most important food crops in the world and intensive breeding has reduced the genetic diversity of elite cultivars. Major efforts have produced draft genome assemblies for the cultivar Chinese Spring, but it is unknown how well this represents the genome diversity found in current modern elite cultivars. In this study we build an improved reference for Chinese Spring and explore gene diversity across 18 wheat cultivars. We predict a pangenome size of 140 500 ± 102 genes, a core genome of 81 070 ± 1631 genes and an average of 128 656 genes in each cultivar. Functional annotation of the variable gene set suggests that it is enriched for genes that may be associated with important agronomic traits. In addition to variation in gene presence, more than 36 million intervarietal single nucleotide polymorphisms were identified across the pangenome. This study of the wheat pangenome provides insight into genome diversity in elite wheat as a basis for genomics-based improvement of this important crop. A wheat pangenome, GBrowse, is available at http://appliedbioinformatics.com.au/cgi-bin/gb2/gbrowse/WheatPan/, and data are available to download from http://wheatgenome.info/wheat_genome_databases.php.


Asunto(s)
Genoma de Planta/genética , Triticum/genética , Cromosomas de las Plantas/genética , Variación Genética/genética , Polimorfismo de Nucleótido Simple/genética
5.
Mol Ecol ; 27(21): 4241-4256, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30222226

RESUMEN

Insect-plant associations and their role in diversification are mostly studied in specialists. Here, we aimed to identify macroevolution patterns in the relationships between generalists and their host plants that have the potential to promote diversification. We focused on the Bemisia tabaci species complex containing more than 35 cryptic species. Mechanisms for explaining this impressive diversification have focused so far on allopatric forces that assume a common, broad, host range. We conducted a literature survey which indicated that species in the complex differ in their host range, with only few showing a truly broad one. We then selected six species, representing different phylogenetic groups and documented host ranges. We tested whether differences in the species expression profiles of detoxification genes are shaped more by their phylogenetic relationships or by their ability to successfully utilize multiple hosts, including novel ones. Performance assays divided the six species into two groups of three, one showing higher performance on various hosts than the other (the lower performance group). The same grouping pattern appeared when the species were clustered according to their expression profiles. Only species placed in the lower performance group showed a tendency to lower the expression of multiple genes. Taken together, these findings bring evidence for the existence of a common detoxification "machinery," shared between species that can perform well on multiple hosts. We raise the possibility that this "machinery" might have played a passive role in the diversification of the complex, by allowing successful migration to new/novel environments, leading, in some cases, to fragmentation and speciation.


Asunto(s)
Hemípteros/genética , Herbivoria , Inactivación Metabólica/genética , Plantas , Animales , Hemípteros/clasificación , Filogenia , Análisis de Secuencia de ARN
6.
Arch Virol ; 163(2): 533-538, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29134336

RESUMEN

Yams (Dioscorea spp.) host a diverse range of badnaviruses (genus Badnavirus, family Caulimoviridae). The first complete genome sequence of Dioscorea bacilliform RT virus 3 (DBRTV3), which belongs to the monophyletic species group K5, is described. This virus is most closely related to Dioscorea bacilliform SN virus (DBSNV, group K4) based on a comparison of genome sequences. Recombination analysis identified a unique recombination event in DBRTV3, with DBSNV likely to be the major parent and Dioscorea bacilliform AL virus (DBALV) the minor parent, providing the first evidence for recombination in yam badnaviruses. This has important implications for yam breeding programmes globally.


Asunto(s)
Badnavirus/genética , Badnavirus/aislamiento & purificación , Dioscorea/virología , Genoma Viral , Enfermedades de las Plantas/virología , Recombinación Genética , Badnavirus/clasificación , Secuencia de Bases , Variación Genética , Datos de Secuencia Molecular , Filogenia
7.
Plant Biotechnol J ; 14(7): 1523-31, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26801360

RESUMEN

The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC-by-BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high-resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high-resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome-scale analysis of repetitive sequences and revealed a ~800-kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone-by-clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC-contig physical map and validate sequence assembly on a chromosome-arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome-by-chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Genoma de Planta , Triticum/genética , Biotecnología/métodos , Cromosomas Artificiales Bacterianos , Análisis de Secuencia de ADN/métodos , Secuencias Repetidas en Tándem
8.
Funct Integr Genomics ; 15(2): 189-96, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25421464

RESUMEN

Recent comparisons of the increasing number of genome sequences have revealed that variation in gene content is considerably more prevalent than previously thought. This variation is likely to have a pronounced effect on phenotypic diversity and represents a crucial target for the assessment of genomic diversity. Leptosphaeria maculans, a causative agent of phoma stem canker, is the most devastating fungal pathogen of Brassica napus (oilseed rape/canola). A number of L. maculans genes are known to be present in some isolates but lost in the others. We analyse gene content variation within three L. maculans isolates using a hybrid mapping and genome assembly approach and identify genes which are present in one of the isolates but missing in the others. In total, 57 genes are shown to be missing in at least one isolate. The genes encode proteins involved in a range of processes including oxidative processes, DNA maintenance, cell signalling and sexual reproduction. The results demonstrate the effectiveness of the method and provide new insight into genomic diversity in L. maculans.


Asunto(s)
Ascomicetos/genética , Eliminación de Gen , Genes Fúngicos , Ascomicetos/aislamiento & purificación , Brassica napus/microbiología , Variación Genética
9.
Plant Biotechnol J ; 13(1): 97-104, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25147022

RESUMEN

Despite being a major international crop, our understanding of the wheat genome is relatively poor due to its large size and complexity. To gain a greater understanding of wheat genome diversity, we have identified single nucleotide polymorphisms between 16 Australian bread wheat varieties. Whole-genome shotgun Illumina paired read sequence data were mapped to the draft assemblies of chromosomes 7A, 7B and 7D to identify more than 4 million intervarietal SNPs. SNP density varied between the three genomes, with much greater density observed on the A and B genomes than the D genome. This variation may be a result of substantial gene flow from the tetraploid Triticum turgidum, which possesses A and B genomes, during early co-cultivation of tetraploid and hexaploid wheat. In addition, we examined SNP density variation along the chromosome syntenic builds and identified genes in low-density regions which may have been selected during domestication and breeding. This study highlights the impact of evolution and breeding on the bread wheat genome and provides a substantial resource for trait association and crop improvement. All SNP data are publically available on a generic genome browser GBrowse at www.wheatgenome.info.


Asunto(s)
Pan , Cromosomas de las Plantas/genética , Polimorfismo de Nucleótido Simple/genética , Triticum/genética , Australia , Genoma de Planta , Filogenia , Reproducibilidad de los Resultados
10.
Theor Appl Genet ; 128(6): 1039-47, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25754422

RESUMEN

KEY MESSAGE: We characterise the distribution of crossover and non-crossover recombination in Brassica napus and Cicer arietinum using a low-coverage genotyping by sequencing pipeline SkimGBS. The growth of next-generation DNA sequencing technologies has led to a rapid increase in sequence-based genotyping for applications including diversity assessment, genome structure validation and gene-trait association. We have established a skim-based genotyping by sequencing method for crop plants and applied this approach to genotype-segregating populations of Brassica napus and Cicer arietinum. Comparison of progeny genotypes with those of the parental individuals allowed the identification of crossover and non-crossover (gene conversion) events. Our results identify the positions of recombination events with high resolution, permitting the mapping and frequency assessment of recombination in segregating populations.


Asunto(s)
Brassica napus/genética , Cicer/genética , Intercambio Genético , Conversión Génica , Técnicas de Genotipaje , Mapeo Cromosómico , Genoma de Planta , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo de Nucleótido Simple
11.
Plant Biotechnol J ; 12(6): 778-86, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24702794

RESUMEN

With the expansion of next-generation sequencing technology and advanced bioinformatics, there has been a rapid growth of genome sequencing projects. However, while this technology enables the rapid and cost-effective assembly of draft genomes, the quality of these assemblies usually falls short of gold standard genome assemblies produced using the more traditional BAC by BAC and Sanger sequencing approaches. Assembly validation is often performed by the physical anchoring of genetically mapped markers, but this is prone to errors and the resolution is usually low, especially towards centromeric regions where recombination is limited. New approaches are required to validate reference genome assemblies. The ability to isolate individual chromosomes combined with next-generation sequencing permits the validation of genome assemblies at the chromosome level. We demonstrate this approach by the assessment of the recently published chickpea kabuli and desi genomes. While previous genetic analysis suggests that these genomes should be very similar, a comparison of their chromosome sizes and published assemblies highlights significant differences. Our chromosomal genomics analysis highlights short defined regions that appear to have been misassembled in the kabuli genome and identifies large-scale misassembly in the draft desi genome. The integration of chromosomal genomics tools within genome sequencing projects has the potential to significantly improve the construction and validation of genome assemblies. The approach could be applied both for new genome assemblies as well as published assemblies, and complements currently applied genome assembly strategies.


Asunto(s)
Cromosomas de las Plantas/genética , Cicer/genética , Genoma de Planta/genética , Genómica/métodos , Núcleo Celular/genética , ADN de Plantas/genética , Citometría de Flujo , Fluorescencia , Tamaño del Genoma , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
12.
PeerJ ; 12: e16949, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410806

RESUMEN

Whiteflies (Bemisia tabaci sensu lato) have a wide host range and are globally important agricultural pests. In Sub-Saharan Africa, they vector viruses that cause two ongoing disease epidemics: cassava brown streak disease and cassava mosaic virus disease. These two diseases threaten food security for more than 800 million people in Sub-Saharan Africa. Efforts are ongoing to identify target genes for the development of novel management options against the whitefly populations that vector these devastating viral diseases affecting cassava production in Sub-Saharan Africa. This study aimed to identify genes that mediate osmoregulation and symbiosis functions within cassava whitefly gut and bacteriocytes and evaluate their potential as key gene targets for novel whitefly control strategies. The gene expression profiles of dissected guts, bacteriocytes and whole bodies were compared by RNAseq analysis to identify genes with significantly enriched expression in the gut and bacteriocytes. Phylogenetic analyses identified three candidate osmoregulation gene targets: two α-glucosidases, SUC 1 and SUC 2 with predicted function in sugar transformations that reduce osmotic pressure in the gut; and a water-specific aquaporin (AQP1) mediating water cycling from the distal to the proximal end of the gut. Expression of the genes in the gut was enriched 23.67-, 26.54- and 22.30-fold, respectively. Genome-wide metabolic reconstruction coupled with constraint-based modeling revealed four genes (argH, lysA, BCAT & dapB) within the bacteriocytes as potential targets for the management of cassava whiteflies. These genes were selected based on their role and essentiality within the different essential amino acid biosynthesis pathways. A demonstration of candidate osmoregulation and symbiosis gene targets in other species of the Bemisia tabaci species complex that are orthologs of the empirically validated osmoregulation genes highlights the latter as promising gene targets for the control of cassava whitefly pests by in planta RNA interference.


Asunto(s)
Hemípteros , Manihot , Virus , Humanos , Animales , Filogenia , Manihot/genética , Hemípteros/genética , Verduras , Agua
13.
Plant Biotechnol J ; 11(5): 564-71, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23346876

RESUMEN

Despite the international significance of wheat, its large and complex genome hinders genome sequencing efforts. To assess the impact of selection on this genome, we have assembled genomic regions representing genes for chromosomes 7A, 7B and 7D. We demonstrate that the dispersion of wheat to new environments has shaped the modern wheat genome. Most genes are conserved between the three homoeologous chromosomes. We found differential gene loss that supports current theories on the evolution of wheat, with greater loss observed in the A and B genomes compared with the D. Analysis of intervarietal polymorphisms identified fewer polymorphisms in the D genome, supporting the hypothesis of early gene flow between the tetraploid and hexaploid. The enrichment for genes on the D genome that confer environmental adaptation may be associated with dispersion following wheat domestication. Our results demonstrate the value of applying next-generation sequencing technologies to assemble gene-rich regions of complex genomes and investigate polyploid genome evolution. We anticipate the genome-wide application of this reduced-complexity syntenic assembly approach will accelerate crop improvement efforts not only in wheat, but also in other polyploid crops of significance.


Asunto(s)
Pan , Productos Agrícolas/genética , Genoma de Planta/genética , Dispersión de Semillas/genética , Triticum/genética , Australia , Ontología de Genes , Genes de Plantas/genética , Polimorfismo de Nucleótido Simple/genética , Poliploidía , Sintenía/genética
14.
PLoS Negl Trop Dis ; 17(11): e0011695, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37956181

RESUMEN

BACKGROUND: Trichuris trichiura (whipworm) is one of the most prevalent soil transmitted helminths (STH) affecting 604-795 million people worldwide. Diagnostic tools that are affordable and rapid are required for detecting STH. Here, we assessed the performance of the near-infrared spectroscopy (NIRS) technique coupled with machine learning algorithms to detect Trichuris muris in faecal, blood, serum samples and non-invasively through the skin of mice. METHODOLOGY: We orally infected 10 mice with 30 T. muris eggs (low dose group), 10 mice with 200 eggs (high dose group) and 10 mice were used as the control group. Using the NIRS technique, we scanned faecal, serum, whole blood samples and mice non-invasively through their skin over a period of 6 weeks post infection. Using artificial neural networks (ANN) and spectra of faecal, serum, blood and non-invasive scans from one experiment, we developed 4 algorithms to differentiate infected from uninfected mice. These models were validated on mice from a second independent experiment. PRINCIPAL FINDINGS: NIRS and ANN differentiated mice into the three groups as early as 2 weeks post infection regardless of the sample used. These results correlated with those from concomitant serological and parasitological investigations. SIGNIFICANCE: To our knowledge, this is the first study to demonstrate the potential of NIRS as a diagnostic tool for human STH infections. The technique could be further developed for large scale surveillance of soil transmitted helminths in human populations.


Asunto(s)
Helmintiasis , Helmintos , Tricuriasis , Humanos , Animales , Ratones , Trichuris , Espectroscopía Infrarroja Corta , Tricuriasis/epidemiología , Helmintiasis/epidemiología , Suelo/parasitología , Algoritmos , Heces/parasitología
15.
Methods Mol Biol ; 2443: 233-243, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35037209

RESUMEN

The recent emergence of "third-generation" sequencing platforms which address shortcomings of standard short reads has allowed the resolution of complex genomic regions during genome assembly. However, sequencing costs for third-generation platforms continue to be high. Novel approaches that leverage the low cost of short-read sequencing while capturing long-range information have been developed. In this chapter, we focus on one such approach, the 10x Genomics' Chromium system. We demonstrate the assembly of the B73 maize reference genome using the Supernova assembler. We also offer suggestions on how one might improve the resulting assembly through analysis of assembly metrics.


Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Zea mays/genética
16.
Mob DNA ; 13(1): 12, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440097

RESUMEN

BACKGROUND: Whiteflies are agricultural pests that cause negative impacts globally to crop yields resulting at times in severe economic losses and food insecurity. The Bemisia tabaci whitefly species complex is the most damaging in terms of its broad crop host range and its ability to serve as vector for over 400 plant viruses. Genomes of whiteflies belonging to this species complex have provided valuable genomic data; however, transposable elements (TEs) within these genomes remain unexplored. This study provides the first accurate characterization of TE content within the B. tabaci species complex. RESULTS: This study identified that an average of 40.61% of the genomes of three whitefly species (MEAM1, MEDQ, and SSA-ECA) consists of TEs. The majority of the TEs identified were DNA transposons (22.85% average) while SINEs (0.14% average) were the least represented. This study also compared the TE content of the three whitefly genomes with three other hemipteran genomes and found significantly more DNA transposons and less LINEs in the whitefly genomes. A total of 63 TE superfamilies were identified to be present across the three whitefly species (39 DNA transposons, six LTR, 16 LINE, and two SINE). The sequences of the identified TEs were clustered which generated 5766 TE clusters. A total of 2707 clusters were identified as uniquely found within the whitefly genomes while none of the generated clusters were from both whitefly and non-whitefly TE sequences. This study is the first to characterize TEs found within different B. tabaci species and has created a standardized annotation workflow that could be used to analyze future whitefly genomes. CONCLUSION: This study is the first to characterize the landscape of TEs within the B. tabaci whitefly species complex. The characterization of these elements within the three whitefly genomes shows that TEs occupy significant portions of B. tabaci genomes, with DNA transposons representing the vast majority. This study also identified TE superfamilies and clusters of TE sequences of potential interest, providing essential information, and a framework for future TE studies within this species complex.

17.
Methods Mol Biol ; 2443: 211-232, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35037208

RESUMEN

Next-generation sequencing (NGS) technologies can generate billions of reads in a single sequencing run. However, with such high-throughput comes quality issues which have to be addressed before undertaking downstream analysis. Quality control on short reads is usually performed at default settings due to a lack of in-depth understanding of a particular software's parameters and their effect if changed on the output. Here we demonstrate how to optimize read trimming using Trimmomatic. We highlight the benefits of trimming by comparing the quality of transcripts assembled using trimmed and untrimmed reads.


Asunto(s)
Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Control de Calidad , RNA-Seq , Secuenciación del Exoma
18.
Viruses ; 14(10)2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36298803

RESUMEN

Dengue virus (DENV) is the world's most common arboviral infection, with an estimated 3.9 million people at risk of the infection, 100 million symptomatic cases and 10,000 deaths per year. Current diagnosis for DENV includes the use of molecular methods, such as polymerase chain reaction, which can be costly for routine use. The near-infrared spectroscopy (NIR) technique is a high throughput technique that involves shining a beam of infrared light on a biological sample, collecting a reflectance spectrum, and using machine learning algorithms to develop predictive algorithms. Here, we used NIR to detect DENV1 artificially introduced into whole blood, plasma, and serum collected from human donors. Machine learning algorithms were developed using artificial neural networks (ANN) and the resultant models were used to predict independent samples. DENV in plasma samples was detected with an overall accuracy, sensitivity, and specificity of 90% (N = 56), 88.5% (N = 28) and 92.3% (N = 28), respectively. However, a predictive sensitivity of 33.3% (N = 16) and 80% (N = 10) and specificity of 46.7% (N = 16) and 32% (N = 10) was achieved for detecting DENV1 in whole blood and serum samples, respectively. DENV1 peaks observed at 812 nm and 819 nm represent C-H stretch, peaks at 1130-1142 nm are related to methyl group and peaks at 2127 nm are related to saturated fatty groups. Our findings indicate the potential of NIR as a diagnostic tool for DENV, however, further work is recommended to assess its sensitivity for detecting DENV in people naturally infected with the virus and to determine its capacity to differentiate DENV serotypes and other arboviruses.


Asunto(s)
Virus del Dengue , Dengue , Humanos , Dengue/sangre , Plasma , Serogrupo , Espectroscopía Infrarroja Corta
19.
J Pest Sci (2004) ; 94(4): 1307-1330, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720787

RESUMEN

Over the past three decades, highly increased whitefly (Bemisia tabaci) populations have been observed on the staple food crop cassava in eastern Africa and associated with ensuing viral disease pandemics and food insecurity. Increased whitefly numbers have also been observed in other key agricultural crops and weeds. Factors behind the population surges on different crops and their interrelationships are unclear, although in cassava they have been associated with specific populations within the Bemisia tabaci species complex known to infest cassava crops in Africa. This study carried out an in-depth survey to understand the distribution of B. tabaci populations infesting crops and uncultivated plant hosts in Uganda, a centre of origin for this pest complex. Whitefly samples were collected from 59 identified plant species and 25 unidentified weeds in a countrywide survey. Identities of 870 individual adult whiteflies were determined through mitochondrial cytochrome oxidase 1 sequences (651 bp) in the 3' barcode region used for B. tabaci systematics. Sixteen B. tabaci and five related whitefly putative species were identified based on > 4.0% nucleotide divergence, of which three are proposed as novel B. tabaci putative species and four as novel closely related whitefly species. The most prevalent whiteflies were classified as B. tabaci MED-ASL (30.5% of samples), sub-Saharan Africa 1 (SSA1, 22.7%) and Bemisia Uganda1 (12.1%). These species were also indicated to be the most polyphagous occurring on 33, 40 and 25 identified plant species, respectively. Multiple (≥ 3) whitefly species occurred on specific crops (bean, eggplant, pumpkin and tomato) and weeds (Sida acuta and Ocimum gratissimum). These plants may have increased potential to act as reservoirs for mixed infections of whitefly-vectored viruses. Management of whitefly pest populations in eastern Africa will require an integration of approaches that consider their degree of polyphagy and a climate that enables the continuous presence of crop and uncultivated plant hosts. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10340-021-01355-6.

20.
Genome Biol Evol ; 12(2): 3857-3872, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31971586

RESUMEN

The glutathione S-transferase (GST) family plays an important role in the adaptation of herbivorous insects to new host plants and other environmental constrains. The family codes for enzymes that neutralize reactive oxygen species and phytotoxins through the conjugation of reduced glutathione. Here, we studied the molecular evolution of the GST family in Bemisia tabaci, a complex of >35 sibling species, differing in their geographic and host ranges. We tested if some enzymes evolved different functionality, by comparing their sequences in six species, representing five of the six major genetic clades in the complex. Comparisons of the nonsynonymous to synonymous substitution ratios detected positive selection events in 11 codons of 5 cytosolic GSTs. Ten of them are located in the periphery of the GST dimer, suggesting a putative involvement in interactions with other proteins. Modeling the tertiary structure of orthologous enzymes, identified additional 19 mutations in 9 GSTs, likely affecting the enzymes' functionality. Most of the mutation events were found in the environmentally responsive classes Delta and Sigma, indicating a slightly different delta/sigma tool box in each species. At a broader genomic perspective, our analyses indicated a significant expansion of the Delta GST class in B. tabaci and a general association between the diet breadth of hemipteran species and their total number of GST genes. We raise the possibility that at least some of the identified changes improve the fitness of the B. tabaci species carrying them, leading to their better adaptation to specific environments.


Asunto(s)
Glutatión Transferasa/genética , Hemípteros/enzimología , Hemípteros/genética , Animales , Evolución Molecular , Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Mutación/genética , Filogenia , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA