Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 19(6): e2205854, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36433864

RESUMEN

Cell engineering, soft robotics, and wearable electronics often desire soft materials that are easy to deform, self-heal readily, and can relax stress rapidly. Hydrogels, a type of hydrophilic networks, are such kind of materials that can be made responsive to environmental stimuli. However, conventional hydrogels often suffer from poor stretchability and repairability. Here, hydrogels consisting of boronic ester dynamic covalent bonds in a double network of poly(vinyl alcohol)/boric acid and chitosan are synthesized, which demonstrate extreme stretchability (up to 310 times the original length), instant self-healing (within 5 s), and reusability and inherent adhesion. Their instant stress relaxation stems from a low activation energy of the boronic ester bond exchange (≤20 kJ mol-1 ) and contributes to the extreme stretchability and self-healing behaviors. Various water-dispersible additives can be readily incorporated in the hydrogels via hand kneading for potential applications such as soft electronics, bio-signal sensing, and soft artificial joints.

2.
MRS Bull ; 48(3): 283-290, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846314

RESUMEN

The unique combination of physical and chemical properties of MXenes has propelled a growing number of applications in biomedicine and healthcare. The expanding library of MXenes with tunable properties is paving the way for high-performance, application-specific MXene-based sensing and therapeutic platforms. In this article, we highlight the emerging biomedical applications of MXenes with specific emphasis on bioelectronics, biosensors, tissue engineering, and therapeutics. We present examples of MXenes and their composites enabling novel technological platforms and therapeutic strategies, and elucidate potential avenues for further developments. Finally, we discuss the materials, manufacturing, and regulatory challenges that need to be synergistically addressed for the clinical translation of MXene-based biomedical technologies.

3.
Nano Lett ; 21(17): 7093-7099, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34459618

RESUMEN

Smart wearable electronic accessories (e.g., watches) have found wide adoption; conversely, progress in electronic textiles has been slow due to the difficulty of embedding rigid electronic materials into flexible fabrics. Electronic clothing requires fibers that are conductive, robust, biocompatible, and can be produced on a large scale. Here, we create sewable electrodes and signal transmission wires from neat carbon nanotube threads (CNTT). These threads are soft like standard sewing thread, but they have metal-level conductivity and low interfacial impedance with skin. Electrocardiograms (EKGs) obtained by CNTT electrodes were comparable (P > 0.05) to signals obtained with commercial electrodes. CNTT can also be used as transmission wires to carry signals to other parts of a garment. Finally, the textiles can be machine-washed and stretched repeatedly without signal degradation. These results demonstrate promise for textile sensors and electronic fabric with the feel of standard clothing that can be incorporated with traditional clothing manufacturing techniques.


Asunto(s)
Dispositivos Electrónicos Vestibles , Vestuario , Electrodos , Electrónica , Textiles
4.
Sensors (Basel) ; 21(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34372446

RESUMEN

A low and stable impedance at the skin-electrode interface is key to high-fidelity acquisition of biosignals, both acutely and in the long term. However, recording quality is highly variable due to the complex nature of human skin. Here, we present an experimental and modeling framework to investigate the interfacial impedance behavior, and describe how skin interventions affect its stability over time. To illustrate this approach, we report experimental measurements on the skin-electrode impedance using pre-gelled, clinical-grade electrodes in healthy human subjects recorded over 24 h following four skin treatments: (i) mechanical abrasion, (ii) chemical exfoliation, (iii) microporation, and (iv) no treatment. In the immediate post-treatment period, mechanical abrasion yields the lowest initial impedance, whereas the other treatments provide modest improvement compared to untreated skin. After 24 h, however, the impedance becomes more uniform across all groups (<20 kΩ at 10 Hz). The impedance data are fitted with an equivalent circuit model of the complete skin-electrode interface, clearly identifying skin-level versus electrode-level contributions to the overall impedance. Using this model, we systematically investigate how time and treatment affect the impedance response, and show that removal of the superficial epidermal layers is essential to achieving a low, long-term stable interface impedance.


Asunto(s)
Piel , Impedancia Eléctrica , Electrodos , Humanos
5.
Nano Lett ; 18(1): 326-335, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29220192

RESUMEN

Soft and conductive nanomaterials like carbon nanotubes, graphene, and nanowire scaffolds have expanded the family of ultraflexible microelectrodes that can bend and flex with the natural movement of the brain, reduce the inflammatory response, and improve the stability of long-term neural recordings. However, current methods to implant these highly flexible electrodes rely on temporary stiffening agents that temporarily increase the electrode size and stiffness thus aggravating neural damage during implantation, which can lead to cell loss and glial activation that persists even after the stiffening agents are removed or dissolve. A method to deliver thin, ultraflexible electrodes deep into neural tissue without increasing the stiffness or size of the electrodes will enable minimally invasive electrical recordings from within the brain. Here we show that specially designed microfluidic devices can apply a tension force to ultraflexible electrodes that prevents buckling without increasing the thickness or stiffness of the electrode during implantation. Additionally, these "fluidic microdrives" allow us to precisely actuate the electrode position with micron-scale accuracy. To demonstrate the efficacy of our fluidic microdrives, we used them to actuate highly flexible carbon nanotube fiber (CNTf) microelectrodes for electrophysiology. We used this approach in three proof-of-concept experiments. First, we recorded compound action potentials in a soft model organism, the small cnidarian Hydra. Second, we targeted electrodes precisely to the thalamic reticular nucleus in brain slices and recorded spontaneous and optogenetically evoked extracellular action potentials. Finally, we inserted electrodes more than 4 mm deep into the brain of rats and detected spontaneous individual unit activity in both cortical and subcortical regions. Compared to syringe injection, fluidic microdrives do not penetrate the brain and prevent changes in intracranial pressure by diverting fluid away from the implantation site during insertion and actuation. Overall, the fluidic microdrive technology provides a robust new method to implant and actuate ultraflexible neural electrodes.


Asunto(s)
Dispositivos Laboratorio en un Chip , Nanotubos de Carbono/química , Neuronas/fisiología , Potenciales de Acción , Animales , Encéfalo/fisiología , Elasticidad , Diseño de Equipo , Hydra/fisiología , Microelectrodos , Ratas
6.
J Neurophysiol ; 119(6): 2068-2081, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29488838

RESUMEN

New devices that use targeted electrical stimulation to treat refractory localization-related epilepsy have shown great promise, although it is not well known which targets most effectively prevent the initiation and spread of seizures. To better understand how the brain transitions from healthy to seizing on a local scale, we induced focal epileptiform activity in the visual cortex of five anesthetized cats with local application of the GABAA blocker picrotoxin while simultaneously recording local field potentials on a high-resolution electrocorticography array and laminar depth probes. Epileptiform activity appeared in the form of isolated events, revealing a consistent temporal pattern of ictogenesis across animals with interictal events consistently preceding the appearance of seizures. Based on the number of spikes per event, there was a natural separation between seizures and shorter interictal events. Two distinct spatial regions were seen: an epileptic focus that grew in size as activity progressed, and an inhibitory surround that exhibited a distinct relationship with the focus both on the surface and in the depth of the cortex. Epileptiform activity in the cortical laminae was seen concomitant with activity on the surface. Focus spikes appeared earlier on electrodes deeper in the cortex, suggesting that deep cortical layers may be integral to recruiting healthy tissue into the epileptic network and could be a promising target for interventional devices. Our study may inform more effective therapies to prevent seizure generation and spread in localization-related epilepsies. NEW & NOTEWORTHY We induced local epileptiform activity and recorded continuous, high-resolution local field potentials from the surface and depth of the visual cortex in anesthetized cats. Our results reveal a consistent pattern of ictogenesis, characterize the spatial spread of the epileptic focus and its relationship with the inhibitory surround, and show that focus activity within events appears earliest in deeper cortical layers. These findings have potential implications for the monitoring and treatment of refractory epilepsy.


Asunto(s)
Excitabilidad Cortical , Epilepsia Refractaria/fisiopatología , Neocórtex/fisiología , Animales , Gatos , Masculino , Neocórtex/fisiopatología
7.
J Neural Eng ; 21(1)2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38081060

RESUMEN

Objective.To evaluate the signal quality of dry MXene-based electrode arrays (also termed 'MXtrodes') for electroencephalographic (EEG) recordings where gelled Ag/AgCl electrodes are a standard.Approach.We placed 4 × 4 MXtrode arrays and gelled Ag/AgCl electrodes on different scalp locations. The scalp was cleaned with alcohol and rewetted with saline before application. We recorded from both electrode types simultaneously while participants performed a vigilance task.Main results.The root mean squared amplitude of MXtrodes was slightly higher than that of Ag/AgCl electrodes (.24-1.94 uV). Most MXtrode pairs had slightly lower broadband spectral coherence (.05 to .1 dB) and Delta- and Theta-band timeseries correlation (.05 to .1 units) compared to the Ag/AgCl pair (p< .001). However, the magnitude of correlation and coherence was high across both electrode types. Beta-band timeseries correlation and spectral coherence were higher between neighboring MXtrodes in the array (.81 to .84 units) than between any other pair (.70 to .75 units). This result suggests the close spacing of the nearest MXtrodes (3 mm) more densely sampled high spatial-frequency topographies. Event-related potentials were more similar between MXtrodes (ρ⩾ .95) than equally spaced Ag/AgCl electrodes (ρ⩽ .77,p< .001). Dry MXtrode impedance (x̄= 5.15 KΩ cm2) was higher and more variable than gelled Ag/AgCl electrodes (x̄= 1.21 KΩ cm2,p< .001). EEG was also recorded on the scalp across diverse hair types.Significance.Dry MXene-based electrodes record EEG at a quality comparable to conventional gelled Ag/AgCl while requiring minimal scalp preparation and no gel. MXtrodes can record independent signals at a spatial density four times higher than conventional electrodes, including through hair, thus opening novel opportunities for research and clinical applications that could benefit from dry and higher-density configurations.


Asunto(s)
Benchmarking , Electroencefalografía , Nitritos , Elementos de Transición , Humanos , Electroencefalografía/métodos , Impedancia Eléctrica , Electrodos , Etanol
8.
eNeuro ; 11(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38388423

RESUMEN

Electroencephalography (EEG) is an indispensable tool in epilepsy, sleep, and behavioral research. In rodents, EEG recordings are typically performed with metal electrodes that traverse the skull into the epidural space. In addition to requiring major surgery, intracranial EEG is difficult to perform for more than a few electrodes, is time-intensive, and confounds experiments studying traumatic brain injury. Here, we describe an open-source cost-effective refinement of this technique for chronic mouse EEG recording. Our alternative two-channel (EEG2) and sixteen-channel high-density EEG (HdEEG) arrays use electrodes made of the novel, flexible 2D nanomaterial titanium carbide (Ti3C2T x ) MXene. The MXene electrodes are placed on the surface of the intact skull and establish an electrical connection without conductive gel or paste. Fabrication and implantation times of MXene EEG electrodes are significantly shorter than the standard approach, and recorded resting baseline and epileptiform EEG waveforms are similar to those obtained with traditional epidural electrodes. Applying HdEEG to a mild traumatic brain injury (mTBI) model in mice of both sexes revealed that mTBI significantly increased spike-wave discharge (SWD) preictal network connectivity with frequencies of interest in the ß-spectral band (12-30 Hz). These findings indicate that the fabrication of MXene electrode arrays is a cost-effective, efficient technology for multichannel EEG recording in mice that obviates the need for skull-penetrating surgery. Moreover, increased preictal ß-frequency network connectivity may contribute to the development of early post-mTBI SWDs.


Asunto(s)
Conmoción Encefálica , Encéfalo , Nitritos , Elementos de Transición , Masculino , Femenino , Ratones , Animales , Electroencefalografía/métodos , Electrodos , Cráneo
9.
Adv Healthc Mater ; : e2402576, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39328088

RESUMEN

Transparent microelectrode arrays have proven useful in neural sensing, offering a clear interface for monitoring brain activity without compromising high spatial and temporal resolution. The current landscape of transparent electrode technology faces challenges in developing durable, highly transparent electrodes while maintaining low interface impedance and prioritizing scalable processing and fabrication methods. To address these limitations, we introduce artifact-resistant transparent MXene microelectrode arrays optimized for high spatiotemporal resolution recording of neural activity. With 60% transmittance at 550 nm, these arrays enable simultaneous imaging and electrophysiology for multimodal neural mapping. Electrochemical characterization shows low impedance of 563 ± 99 kΩ at 1 kHz and a charge storage capacity of 58 mC cm⁻² without chemical doping. In vivo experiments in rodent models demonstrate the transparent arrays' functionality and performance. In a rodent model of chemically-induced epileptiform activity, we tracked ictal wavefronts via calcium imaging while simultaneously recording seizure onset. In the rat barrel cortex, we recorded multi-unit activity across cortical depths, showing the feasibility of recording high-frequency electrophysiological activity. The transparency and optical absorption properties of Ti3C2Tx MXene microelectrodes enable high-quality recordings and simultaneous light-based stimulation and imaging without contamination from light-induced artifacts.

10.
J Neural Eng ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39321851

RESUMEN

OBJECTIVE: The phase of the electroencephalographic (EEG) signal predicts performance in motor, somatosensory, and cognitive functions. Studies suggest that brain phase resets align neural oscillations with external stimuli, or couple oscillations across frequency bands and brain regions. Transcranial Magnetic Stimulation (TMS) can cause phase resets noninvasively in the cortex, thus providing the potential to control phase-sensitive cognitive functions. However, the relationship between TMS parameters and phase resetting is not fully understood. This is especially true of TMS intensity, which may be crucial to enabling precise control over the amount of phase resetting that is induced. Additionally, TMS phase resetting may interact with the instantaneous phase of the brain. Understanding these relationships is crucial to the development of more powerful and controllable stimulation protocols. Approach: To test these relationships, we conducted a TMS-EEG study. We applied single-pulse TMS at varying degrees of stimulation intensity to the motor area in an open loop. Offline, we used an autoregressive algorithm to estimate the phase of the intrinsic µ-Alpha rhythm of the motor cortex at the moment each TMS pulse was delivered. Main results: We identified post-stimulation epochs where µ-Alpha phase resetting and N100 amplitude depend parametrically on TMS intensity and are significant versus peripheral auditory sham stimulation. We observed µ-Alpha phase inversion after stimulations near peaks but not troughs in the endogenous µ-Alpha rhythm. Significance: These data suggest that low-intensity TMS primarily resets existing oscillations, while at higher intensities TMS may activate previously silent neurons, but only when endogenous oscillations are near the peak phase. These data can guide future studies that seek to induce phase resetting, and point to a way to manipulate the phase resetting effect of TMS by varying only the timing of the pulse with respect to ongoing brain activity.

11.
ACS Nano ; 18(34): 23217-23231, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39141004

RESUMEN

Flexible fiber-based microelectrodes allow safe and chronic investigation and modulation of electrically active cells and tissues. Compared to planar electrodes, they enhance targeting precision while minimizing side effects from the device-tissue mechanical mismatch. However, the current manufacturing methods face scalability, reproducibility, and handling challenges, hindering large-scale deployment. Furthermore, only a few designs can record electrical and biochemical signals necessary for understanding and interacting with complex biological systems. In this study, we present a method that utilizes the electrical conductivity and easy processability of MXenes, a diverse family of two-dimensional nanomaterials, to apply a thin layer of MXene coating continuously to commercial nylon filaments (30-300 µm in diameter) at a rapid speed (up to 15 mm/s), achieving a linear resistance below 10 Ω/cm. The MXene-coated filaments are then batch-processed into free-standing fiber microelectrodes with excellent flexibility, durability, and consistent performance even when knotted. We demonstrate the electrochemical properties of these fiber electrodes and their hydrogen peroxide (H2O2) sensing capability and showcase their applications in vivo (rodent) and ex vivo (bladder tissue). This scalable process fabricates high-performance microfiber electrodes that can be easily customized and deployed in diverse bioelectronic monitoring and stimulation studies, contributing to a deeper understanding of health and disease.


Asunto(s)
Peróxido de Hidrógeno , Microelectrodos , Peróxido de Hidrógeno/química , Animales , Vejiga Urinaria , Conductividad Eléctrica , Ratas , Técnicas Electroquímicas/instrumentación , Nanoestructuras/química
12.
Artículo en Inglés | MEDLINE | ID: mdl-38082745

RESUMEN

Neurological disorders are a significant societal and economic burden. Common pharmacological therapies often can only manage symptoms and have limited efficacy. Intraparenchymal convection enhanced delivery (IP CED) is a neurosurgical technique for direct brain delivery of therapeutics. Currently, the main applications of IP CED are targeted chemotherapy for glioblastoma and gene therapy. While IP CED has advantages over systemic approaches, its benefits can be drastically reduced by inadequate coverage as low as 21% of target anatomy, excessive infusion durations greater than 2 hours, and off-target effects. Addressing the limitations of IP CED requires thorough investigation and optimization of the relevant fluid dynamic and operational parameters. In this work, we present the design, fabrication, and characterization of low-cost, open-source, and fully automated CED cannula insertion control and pressure-monitoring systems. Using these automated CED control systems, we investigate the effects of pressure, insertion velocity, and flow rates on several outcome variables, including reflux, volume distribution, and infusion cloud morphology during CED infusions in brain phantoms.Clinical Relevance- CED pressure properties may be able to implicate reflux incidents and could provide clinicians with valuable, real-time information regarding ongoing infusions without the need for costly medical imaging modalities.


Asunto(s)
Sistemas de Liberación de Medicamentos , Glioblastoma , Humanos , Sistemas de Liberación de Medicamentos/métodos , Convección , Encéfalo , Glioblastoma/tratamiento farmacológico , Cateterismo
13.
2d Mater ; 10(4)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37521001

RESUMEN

Ti3C2Tx MXene is emerging as the enabling material in a broad range of wearable and implantable medical technologies, thanks to its outstanding electrical, electrochemical, and optoelectronic properties, and its compatibility with high-throughput solution-based processing. While the prevalence of Ti3C2Tx MXene in biomedical research, and in particular bioelectronics, has steadily increased, the long-term stability and degradation of Ti3C2Tx MXene films have not yet been thoroughly investigated, limiting its use for chronic applications. Here, we investigate the stability of Ti3C2Tx films and electrodes under environmental conditions that are relevant to medical and bioelectronic technologies: storage in ambient atmosphere (shelf-life), submersion in saline (akin to the in vivo environment), and storage in a desiccator (low-humidity). Furthermore, to evaluate the effect of the MXene deposition method and thickness on the film stability in the different conditions, we compare thin (25 nm), and thick (1.0 µm) films and electrodes fabricated via spray-coating and blade-coating. Our findings indicate that film processing method and thickness play a significant role in determining the long-term performance of Ti3C2Tx films and electrodes, with highly aligned, thick films from blade coating remarkably retaining their conductivity, electrochemical impedance, and morphological integrity even after 30 days in saline. Our extensive spectroscopic analysis reveals that the degradation of Ti3C2Tx films in high-humidity environments is primarily driven by moisture intercalation, ingress, and film delamination, with evidence of only minimal to moderate oxidation.

14.
eNeuro ; 10(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558464

RESUMEN

EEG phase is increasingly used in cognitive neuroscience, brain-computer interfaces, and closed-loop stimulation devices. However, it is unknown how accurate EEG phase prediction is across cognitive states. We determined the EEG phase prediction accuracy of parieto-occipital alpha waves across rest and task states in 484 participants over 11 public datasets. We were able to track EEG phase accurately across various cognitive conditions and datasets, especially during periods of high instantaneous alpha power and signal-to-noise ratio (SNR). Although resting states generally have higher accuracies than task states, absolute accuracy differences were small, with most of these differences attributable to EEG power and SNR. These results suggest that experiments and technologies using EEG phase should focus more on minimizing external noise and waiting for periods of high power rather than inducing a particular cognitive state.


Asunto(s)
Electroencefalografía , Descanso , Humanos , Electroencefalografía/métodos , Relación Señal-Ruido , Descanso/fisiología , Cognición , Encéfalo/fisiología
15.
Front Behav Neurosci ; 17: 1176865, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37292166

RESUMEN

Recent studies suggest that attention is rhythmic. Whether that rhythmicity can be explained by the phase of ongoing neural oscillations, however, is still debated. We contemplate that a step toward untangling the relationship between attention and phase stems from employing simple behavioral tasks that isolate attention from other cognitive functions (perception/decision-making) and by localized monitoring of neural activity with high spatiotemporal resolution over the brain regions associated with the attentional network. In this study, we investigated whether the phase of electroencephalography (EEG) oscillations predicts alerting attention. We isolated the alerting mechanism of attention using the Psychomotor Vigilance Task, which does not involve a perceptual component, and collected high resolution EEG using novel high-density dry EEG arrays at the frontal region of the scalp. We identified that alerting attention alone is sufficient to induce a phase-dependent modulation of behavior at EEG frequencies of 3, 6, and 8 Hz throughout the frontal region, and we quantified the phase that predicts the high and low attention states in our cohort. Our findings disambiguate the relationship between EEG phase and alerting attention.

16.
Small Methods ; 7(8): e2201318, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36571435

RESUMEN

High-density surface electromyography (HDsEMG) allows noninvasive muscle monitoring and disease diagnosis. Clinical translation of current HDsEMG technologies is hampered by cost, limited scalability, low usability, and minimal spatial coverage. Here, this study presents, validates, and demonstrates the broad clinical applicability of dry wearable MXene HDsEMG arrays (MXtrodes) fabricated from safe and scalable liquid-phase processing of Ti3 C2 Tx . The fabrication scheme allows easy customization of array geometry to match subject anatomy, while the gel-free and minimal skin preparation enhance usability and comfort. The low impedance and high conductivity of the MXtrode arrays allow detection of the activity of large muscle groups at higher quality and spatial resolution than state-of-the-art wireless electromyography  sensors, and in realistic clinical scenarios. To demonstrate the clinical applicability of MXtrodes in the context of neuromuscular diagnostics and rehabilitation, simultaneous HDsEMG and biomechanical mapping of muscle groups across the whole calf during various tasks, ranging from controlled contractions to walking is shown. Finally, the integration of HDsEMG acquired with MXtrodes with a machine learning pipeline and the accurate prediction of the phases of human gait are shown. The results underscore the advantages and translatability of MXene-based wearable bioelectronics for studying neuromuscular function and disease, as well as for precision rehabilitation.


Asunto(s)
Dispositivos de Autoayuda , Dispositivos Electrónicos Vestibles , Humanos , Electromiografía/métodos , Músculo Esquelético/fisiología
17.
ACS Nano ; 17(10): 9442-9454, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37171407

RESUMEN

MXenes are being heavily investigated in biomedical research, with applications ranging from regenerative medicine to bioelectronics. To enable the adoption and integration of MXenes into therapeutic platforms and devices, however, their stability under standard sterilization procedures must be established. Here, we present a comprehensive investigation of the electrical, chemical, structural, and mechanical effects of common thermal (autoclave) and chemical (ethylene oxide (EtO) and H2O2 gas plasma) sterilization protocols on both thin-film Ti3C2Tx MXene microelectrodes and mesoscale arrays made from Ti3C2Tx-infused cellulose-elastomer composites. We also evaluate the effectiveness of the sterilization processes in eliminating all pathogens from the Ti3C2Tx films and composites. Post-sterilization analysis revealed that autoclave and EtO did not alter the DC conductivity, electrochemical impedance, surface morphology, or crystallographic structure of Ti3C2Tx and were both effective at eliminating E. coli from both types of Ti3C2Tx-based devices. On the other end, exposure to H2O2 gas plasma sterilization for 45 min induced severe degradation of the structure and properties of Ti3C2Tx films and composites. The stability of the Ti3C2Tx after EtO and autoclave sterilization and the complete removal of pathogens establish the viability of both sterilization processes for Ti3C2Tx-based technologies.


Asunto(s)
Escherichia coli , Peróxido de Hidrógeno , Titanio/farmacología , Esterilización
18.
iScience ; 25(11): 105432, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36405772

RESUMEN

This backstory is a conversation highlighting the importance of interdisciplinary collaboration for developing the field of neurotechnology and for its safe clinical translation and assessment of its societal impacts.

19.
eNeuro ; 9(3)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35470227

RESUMEN

Hippocampal seizures are a defining feature of mesial temporal lobe epilepsy (MTLE). Area CA1 of the hippocampus is commonly implicated in the generation of seizures, which may occur because of the activity of endogenous cell populations or of inputs from other regions within the hippocampal formation. Simultaneously observing activity at the cellular and network scales in vivo remains challenging. Here, we present a novel technology for simultaneous electrophysiology and multicellular calcium imaging of CA1 pyramidal cells (PCs) in mice enabled by a transparent graphene-based microelectrode array (Gr MEA). We examine PC firing at seizure onset, oscillatory coupling, and the dynamics of the seizure traveling wave as seizures evolve. Finally, we couple features derived from both modalities to predict the speed of the traveling wave using bootstrap aggregated regression trees. Analysis of the most important features in the regression trees suggests a transition among states in the evolution of hippocampal seizures.


Asunto(s)
Epilepsia del Lóbulo Temporal , Grafito , Animales , Hipocampo , Ratones , Microelectrodos , Convulsiones
20.
iScience ; 25(7): 104652, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35811842

RESUMEN

Nanocarbons are often employed as coatings for neural electrodes to enhance surface area. However, processing and integrating them into microfabrication flows requires complex and harmful chemical and heating conditions. This article presents a safe, scalable, cost-effective method to produce reduced graphene oxide (rGO) coatings using vitamin C (VC) as the reducing agent. We spray coat GO + VC mixtures onto target substrates, and then heat samples for 15 min at 150°C. The resulting rGO films have conductivities of ∼44 S cm-1, and are easily integrated into an ad hoc microfabrication flow. The rGO/Au microelectrodes show ∼8x lower impedance and ∼400x higher capacitance than bare Au, resulting in significantly enhanced charge storage and injection capacity. We subsequently use rGO/Au arrays to detect dopamine in vitro, and to map cortical activity intraoperatively over rat whisker barrel cortex, demonstrating that conductive VC-rGO coatings improve the performance and stability of multimodal microelectrodes for different applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA