Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroinflammation ; 20(1): 123, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221552

RESUMEN

INTRODUCTION: The humanized anti-α4 integrin blocking antibody natalizumab (NTZ) is an effective treatment for relapsing-remitting multiple sclerosis (RRMS) that is associated with the risk of progressive multifocal leukoencephalopathy (PML). While extended interval dosing (EID) of NTZ reduces the risk for PML, the minimal dose of NTZ required to maintain its therapeutic efficacy remains unknown. OBJECTIVE: Here we aimed to identify the minimal NTZ concentration required to inhibit the arrest of human effector/memory CD4+ T cell subsets or of PBMCs to the blood-brain barrier (BBB) under physiological flow in vitro. RESULTS: Making use of three different human in vitro BBB models and in vitro live-cell imaging we observed that NTZ mediated inhibition of α4-integrins failed to abrogate T cell arrest to the inflamed BBB under physiological flow. Complete inhibition of shear resistant T cell arrest required additional inhibition of ß2-integrins, which correlated with a strong upregulation of endothelial intercellular adhesion molecule (ICAM)-1 on the respective BBB models investigated. Indeed, NTZ mediated inhibition of shear resistant T cell arrest to combinations of immobilized recombinant vascular cell adhesion molecule (VCAM)-1 and ICAM-1 was abrogated in the presence of tenfold higher molar concentrations of ICAM-1 over VCAM-1. Also, monovalent NTZ was less potent than bivalent NTZ in inhibiting T cell arrest to VCAM-1 under physiological flow. In accordance with our previous observations ICAM-1 but not VCAM-1 mediated T cell crawling against the direction of flow. CONCLUSION: Taken together, our in vitro observations show that high levels of endothelial ICAM-1 abrogate NTZ mediated inhibition of T cell interaction with the BBB. EID of NTZ in MS patients may thus require consideration of the inflammatory status of the BBB as high levels of ICAM-1 may provide an alternative molecular cue allowing for pathogenic T cell entry into the CNS in the presence of NTZ.


Asunto(s)
Barrera Hematoencefálica , Linfocitos T , Humanos , Natalizumab , Molécula 1 de Adhesión Intercelular , Integrina alfa4 , Linfocitos T CD4-Positivos
2.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38069025

RESUMEN

Intussusceptive pillars, regarded as a hallmark of intussusceptive angiogenesis, have been described in developing vasculature of many organs and organisms. The aim of this study was to resolve the question about pillar formation and their further maturation employing zebrafish caudal vein plexus (CVP). The CVP development was monitored by in vivo confocal microscopy in high spatio-temporal resolution using the transgenic zebrafish model Fli1a:eGPF//Gata1:dsRed. We tracked back the formation of pillars (diameter ≤ 4 µm) and intercapillary meshes (diameter > 4 µm) and analysed their morphology and behaviour. Transluminal pillars in the CVP arose via a combination of sprouting, lumen expansion, and/or the creation of intraluminal folds, and those mechanisms were not associated directly with blood flow. The follow-up of pillars indicated that one-third of them disappeared between 28 and 48 h post fertilisation (hpf), and of the remaining ones, only 1/17 changed their cross-section area by >50%. The majority of the bigger meshes (39/62) increased their cross-section area by >50%. Plexus simplification and the establishment of hierarchy were dominated by the dynamics of intercapillary meshes, which formed mainly via sprouting angiogenesis. These meshes were observed to grow, reshape, and merge with each other. Our observations suggested an alternative view on intussusceptive angiogenesis in the CVP.


Asunto(s)
Intususcepción , Pez Cebra , Animales , Morfogénesis , Hemodinámica , Microscopía Intravital , Neovascularización Fisiológica/fisiología
3.
Int J Mol Sci ; 20(21)2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31671721

RESUMEN

The homeostasis of the central nervous system (CNS) is ensured by the endothelial, epithelial, mesothelial and glial brain barriers, which strictly control the passage of molecules, solutes and immune cells. While the endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid barrier (BCSFB) have been extensively investigated, less is known about the epithelial and mesothelial arachnoid barrier and the glia limitans. Here, we summarize current knowledge of the cellular composition of the brain barriers with a specific focus on describing the molecular constituents of their junctional complexes. We propose that the brain barriers maintain CNS immune privilege by dividing the CNS into compartments that differ with regard to their role in immune surveillance of the CNS. We close by providing a brief overview on experimental tools allowing for reliable in vivo visualization of the brain barriers and their junctional complexes and thus the respective CNS compartments.


Asunto(s)
Uniones Adherentes/fisiología , Encéfalo/fisiología , Células Endoteliales/fisiología , Células Epiteliales/fisiología , Epitelio/fisiología , Neuroglía/fisiología , Uniones Estrechas/fisiología , Astrocitos , Membrana Basal , Transporte Biológico/fisiología , Barrera Hematoencefálica , Sistema Nervioso Central/inmunología , Plexo Coroideo , Homeostasis , Miocitos del Músculo Liso , Pericitos
4.
Cells ; 12(19)2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37830625

RESUMEN

Platelets are generated by specialized cells called megakaryocytes (MKs). However, MK's origin and platelet release mode have remained incompletely understood. Here, we established direct visualization of embryonic thrombopoiesis in vivo by combining multiphoton intravital microscopy (MP-IVM) with a fluorescence switch reporter mouse model under control of the platelet factor 4 promoter (Pf4CreRosa26mTmG). Using this microscopy tool, we discovered that fetal liver MKs provide higher thrombopoietic activity than yolk sac MKs. Mechanistically, fetal platelets were released from MKs either by membrane buds or the formation of proplatelets, with the former constituting the key process. In E14.5 c-Myb-deficient embryos that lack definitive hematopoiesis, MK and platelet numbers were similar to wild-type embryos, indicating the independence of embryonic thrombopoiesis from definitive hematopoiesis at this stage of development. In summary, our novel MP-IVM protocol allows the characterization of thrombopoiesis with high spatio-temporal resolution in the mouse embryo and has identified membrane budding as the main mechanism of fetal platelet production.


Asunto(s)
Microscopía , Trombopoyesis , Ratones , Animales , Plaquetas , Megacariocitos , Recuento de Plaquetas
5.
Nat Commun ; 14(1): 5837, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730744

RESUMEN

Meninges cover the surface of the brain and spinal cord and contribute to protection and immune surveillance of the central nervous system (CNS). How the meningeal layers establish CNS compartments with different accessibility to immune cells and immune mediators is, however, not well understood. Here, using 2-photon imaging in female transgenic reporter mice, we describe VE-cadherin at intercellular junctions of arachnoid and pia mater cells that form the leptomeninges and border the subarachnoid space (SAS) filled with cerebrospinal fluid (CSF). VE-cadherin expression also marked a layer of Prox1+ cells located within the arachnoid beneath and separate from E-cadherin+ arachnoid barrier cells. In vivo imaging of the spinal cord and brain in female VE-cadherin-GFP reporter mice allowed for direct observation of accessibility of CSF derived tracers and T cells into the SAS bordered by the arachnoid and pia mater during health and neuroinflammation, and detection of volume changes of the SAS during CNS pathology. Together, the findings identified VE-cadherin as an informative landmark for in vivo imaging of the leptomeninges that can be used to visualize the borders of the SAS and thus potential barrier properties of the leptomeninges in controlling access of immune mediators and immune cells into the CNS during health and neuroinflammation.


Asunto(s)
Enfermedades Neuroinflamatorias , Piamadre , Femenino , Animales , Ratones , Sistema Nervioso Central/diagnóstico por imagen , Aracnoides/diagnóstico por imagen , Cadherinas , Inflamación , Ratones Transgénicos
6.
EBioMedicine ; 91: 104558, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37043871

RESUMEN

BACKGROUND: Routes along the olfactory nerves crossing the cribriform plate that extend to lymphatic vessels within the nasal cavity have been identified as a critical cerebrospinal fluid (CSF) outflow pathway. However, it is still unclear how the efflux pathways along the nerves connect to lymphatic vessels or if any functional barriers are present at this site. The aim of this study was to anatomically define the connections between the subarachnoid space and the lymphatic system at the cribriform plate in mice. METHODS: PEGylated fluorescent microbeads were infused into the CSF space in Prox1-GFP reporter mice and decalcification histology was utilized to investigate the anatomical connections between the subarachnoid space and the lymphatic vessels in the nasal submucosa. A fluorescently-labelled antibody marking vascular endothelium was injected into the cisterna magna to demonstrate the functionality of the lymphatic vessels in the olfactory region. Finally, we performed immunostaining to study the distribution of the arachnoid barrier at the cribriform plate region. FINDINGS: We identified that there are open and direct connections from the subarachnoid space to lymphatic vessels enwrapping the olfactory nerves as they cross the cribriform plate towards the nasal submucosa. Furthermore, lymphatic vessels adjacent to the olfactory bulbs form a continuous network that is functionally connected to lymphatics in the nasal submucosa. Immunostainings revealed a discontinuous distribution of the arachnoid barrier at the olfactory region of the mouse. INTERPRETATION: Our data supports a direct bulk flow mechanism through the cribriform plate allowing CSF drainage into nasal submucosal lymphatics in mice. FUNDING: This study was supported by the Swiss National Science Foundation (310030_189226), Dementia Research Switzerland-Synapsis Foundation, the Heidi Seiler Stiftung and the Fondation Dr. Corinne Schuler.


Asunto(s)
Vasos Linfáticos , Nervio Olfatorio , Animales , Ratones , Hueso Etmoides , Sistema Linfático/metabolismo , Espacio Subaracnoideo/metabolismo
7.
J Vis Exp ; (175)2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34661568

RESUMEN

Arteriogenesis strongly depends on leukocyte and platelet recruitment to the perivascular space of growing collateral vessels. The standard approach for analyzing collateral arteries and leukocytes in arteriogenesis is ex vivo (immuno-) histological methodology. However, this technique does not allow the measurement of dynamic processes such as blood flow, shear stress, cell-cell interactions, and particle velocity. This paper presents a protocol to monitor in vivo processes in growing collateral arteries during arteriogenesis utilizing intravital imaging. The method described here is a reliable tool for dynamics measurement and offers a high-contrast analysis with minimal photo-cytotoxicity, provided by multiphoton excitation microscopy. Prior to analyzing growing collateral arteries, arteriogenesis was induced in the adductor muscle of mice by unilateral ligation of the femoral artery. After the ligation, the preexisting collateral arteries started to grow due to increased shear stress. Twenty-four hours after surgery, the skin and subcutaneous fat above the collateral arteries were removed, constructing a pocket for further analyses. To visualize blood flow and immune cells during in vivo imaging, CD41-fluorescein isothiocyanate (FITC) (platelets) and CD45-phycoerythrin (PE) (leukocytes) antibodies were injected intravenously (i.v.) via a catheter placed in the tail vein of a mouse. This article introduces intravital multiphoton imaging as an alternative or in vivo complementation to the commonly used static ex vivo (immuno-) histological analyses to study processes relevant for arteriogenesis. In summary, this paper describes a novel and dynamic in vivo method to investigate immune cell trafficking, blood flow, and shear stress in a hindlimb model of arteriogenesis, which enhances evaluation possibilities notably.


Asunto(s)
Leucocitos , Neovascularización Fisiológica , Animales , Arteria Femoral , Miembro Posterior , Microscopía Intravital , Ratones
8.
J Exp Med ; 215(7): 1869-1890, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29875261

RESUMEN

T cells are actively scanning pMHC-presenting cells in lymphoid organs and nonlymphoid tissues (NLTs) with divergent topologies and confinement. How the T cell actomyosin cytoskeleton facilitates this task in distinct environments is incompletely understood. Here, we show that lack of Myosin IXb (Myo9b), a negative regulator of the small GTPase Rho, led to increased Rho-GTP levels and cell surface stiffness in primary T cells. Nonetheless, intravital imaging revealed robust motility of Myo9b-/- CD8+ T cells in lymphoid tissue and similar expansion and differentiation during immune responses. In contrast, accumulation of Myo9b-/- CD8+ T cells in NLTs was strongly impaired. Specifically, Myo9b was required for T cell crossing of basement membranes, such as those which are present between dermis and epidermis. As consequence, Myo9b-/- CD8+ T cells showed impaired control of skin infections. In sum, we show that Myo9b is critical for the CD8+ T cell adaptation from lymphoid to NLT surveillance and the establishment of protective tissue-resident T cell populations.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Miosinas/metabolismo , Animales , Linfocitos T CD8-positivos/citología , Movimiento Celular , Polaridad Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Epidermis/patología , Epidermis/virología , Matriz Extracelular/metabolismo , Inmunidad , Activación de Linfocitos/inmunología , Tejido Linfoide/metabolismo , Ratones Endogámicos C57BL , Miosinas/deficiencia , Receptores Mensajeros de Linfocitos/metabolismo , Proteínas de Unión al GTP rho/metabolismo
9.
J Immunol Methods ; 438: 35-41, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27589923

RESUMEN

The development of multi-photon intravital microscopy, in particular two-photon microscopy (2PM), has been a breakthrough technique for deep-tissue imaging of dynamic cell behavior inside live organisms and has substantially advanced the field of immunology. However, intravital time-lapse imaging over prolonged time periods is complicated by slow tissue drifts caused by vital activity, leading to shifting fields of views and making the acquired image sequence partially or completely unanalyzable. To solve this issue, we have established a system that performs continuous drift offset correction in real time using fine pattern matching during 2PM acquisition. We incorporated an extensive use of graphical processing unit (GPU) for high-speed computing required for real time correction during data acquisition. This allowed us to perform prolonged acquisitions and increase the proportion of analyzable datasets to nearly 100% in lymphoid and non-lymphoid tissues. Considering the straightforward implementation of our newly developed system, we anticipate that it will be applicable for other users interested in improving the quality of live imaging data acquisition.


Asunto(s)
Sistemas de Computación , Procesamiento de Imagen Asistido por Computador , Microscopía Intravital/instrumentación , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Piel/diagnóstico por imagen , Linfocitos T/citología , Traslado Adoptivo , Puntos Anatómicos de Referencia , Animales , Movimiento Celular , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA