Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Haematologica ; 109(1): 256-271, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37470139

RESUMEN

Multiple myeloma (MM) is the second most prevalent hematologic malignancy and is incurable because of the inevitable development of drug resistance. Methionine adenosyltransferase 2α (MAT2A) is the primary producer of the methyl donor S-adenosylmethionine (SAM) and several studies have documented MAT2A deregulation in different solid cancers. As the role of MAT2A in MM has not been investigated yet, the aim of this study was to clarify the potential role and underlying molecular mechanisms of MAT2A in MM, exploring new therapeutic options to overcome drug resistance. By analyzing publicly available gene expression profiling data, MAT2A was found to be more highly expressed in patient-derived myeloma cells than in normal bone marrow plasma cells. The expression of MAT2A correlated with an unfavorable prognosis in relapsed patients. MAT2A inhibition in MM cells led to a reduction in intracellular SAM levels, which resulted in impaired cell viability and proliferation, and induction of apoptosis. Further mechanistic investigation demonstrated that MAT2A inhibition inactivated the mTOR-4EBP1 pathway, accompanied by a decrease in protein synthesis. MAT2A targeting in vivo with the small molecule compound FIDAS-5 was able to significantly reduce tumor burden in the 5TGM1 model. Finally, we found that MAT2A inhibition can synergistically enhance the anti-MM effect of the standard-of-care agent bortezomib on both MM cell lines and primary human CD138+ MM cells. In summary, we demonstrate that MAT2A inhibition reduces MM cell proliferation and survival by inhibiting mTOR-mediated protein synthesis. Moreover, our findings suggest that the MAT2A inhibitor FIDAS-5 could be a novel compound to improve bortezomib-based treatment of MM.


Asunto(s)
Mieloma Múltiple , S-Adenosilmetionina , Humanos , S-Adenosilmetionina/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Bortezomib/farmacología , Pronóstico , Serina-Treonina Quinasas TOR , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo
2.
J Pathol ; 260(2): 112-123, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36807305

RESUMEN

Multiple myeloma (MM) remains an incurable haematological malignancy despite substantial advances in therapy. Hypoxic bone marrow induces metabolic rewiring in MM cells contributing to survival and drug resistance. Therefore, targeting metabolic pathways may offer an alternative treatment option. In this study, we repurpose two FDA-approved drugs, syrosingopine and metformin. Syrosingopine was used as a dual inhibitor of monocarboxylate transporter 1 and 4 (MCT1/4) and metformin as an inhibitor for oxidative phosphorylation (OXPHOS). Anti-tumour effects were evaluated for single agents and in combination therapy. Survival and expression data for MCT1/MCT4 were obtained from the Total Therapy 2, Mulligan, and Multiple Myeloma Research Foundation cohorts. Cell death, viability, and proliferation were measured using Annexin V/7-AAD, CellTiterGlo, and BrdU, respectively. Metabolic effects were assessed using Seahorse Glycolytic Rate assays and LactateGlo assays. Differential protein expression was determined using western blotting, and the SUnSET method was implemented to quantify protein synthesis. Finally, the syngeneic 5T33MMvv model was used for in vivo analysis. High-level expression of MCT1 and MCT4 both correlated with a significantly lower overall survival of patients. Lactate production as well as MCT1/MCT4 expression were significantly upregulated in hypoxia, confirming the Warburg effect in MM. Dual inhibition of MCT1/4 with syrosingopine resulted in intracellular lactate accumulation and reduced cell viability and proliferation. However, only at higher doses (>10 µm) was syrosingopine able to induce cell death. By contrast, combination treatment of syrosingopine with metformin was highly cytotoxic for MM cell lines and primary patient samples and resulted in a suppression of both glycolysis and OXPHOS. Moreover, pathway analysis revealed an upregulation of the energy sensor p-AMPKα and more downstream a reduction in protein synthesis. Finally, the combination treatment resulted in a significant reduction in tumour burden in vivo. This study proposes an alternative combination treatment for MM and provides insight into intracellular effects. © 2023 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Antineoplásicos , Metformina , Mieloma Múltiple , Humanos , Metformina/farmacología , Mieloma Múltiple/metabolismo , Antineoplásicos/farmacología , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Línea Celular Tumoral
3.
J Pathol ; 259(1): 69-80, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36245401

RESUMEN

While multi-drug combinations and continuous treatment have become standard for multiple myeloma, the disease remains incurable. Repurposing drugs that are currently used for other indications could provide a novel approach to improve the therapeutic efficacy of standard multiple myeloma treatments. Here, we assessed the anti-tumor effects of cardiac drugs called ß-blockers as a single agent and in combination with commonly used anti-myeloma therapies. Expression of the ß2 -adrenergic receptor correlated with poor survival outcomes in patients with multiple myeloma. Targeting the ß2 -adrenergic receptor (ß2 AR) using either selective or non-selective ß-blockers reduced multiple myeloma cell viability, and induced apoptosis and autophagy. Blockade of the ß2 AR modulated cancer cell metabolism by reducing the mitochondrial respiration as well as the glycolytic activity. These effects were not observed by blockade of ß1 -adrenergic receptors. Combining ß2 AR blockade with the chemotherapy drug melphalan or the proteasome inhibitor bortezomib significantly increased apoptosis in multiple myeloma cells. These data identify the therapeutic potential of ß2 AR-blockers as a complementary or additive approach in multiple myeloma treatment and support the future clinical evaluation of non-selective ß-blockers in a randomized controlled trial. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 1/uso terapéutico , Transducción de Señal , Bortezomib/farmacología , Bortezomib/uso terapéutico , Apoptosis
4.
Cell Mol Life Sci ; 80(9): 249, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37578563

RESUMEN

The glucocorticoid receptor (GR) is a crucial drug target in multiple myeloma as its activation with glucocorticoids effectively triggers myeloma cell death. However, as high-dose glucocorticoids are also associated with deleterious side effects, novel approaches are urgently needed to improve GR action in myeloma. Here, we reveal a functional crosstalk between GR and the mineralocorticoid receptor (MR) that plays a role in improved myeloma cell killing. We show that the GR agonist dexamethasone (Dex) downregulates MR levels in a GR-dependent way in myeloma cells. Co-treatment of Dex with the MR antagonist spironolactone (Spi) enhances Dex-induced cell killing in primary, newly diagnosed GC-sensitive myeloma cells. In a relapsed GC-resistant setting, Spi alone induces distinct myeloma cell killing. On a mechanistic level, we find that a GR-MR crosstalk likely arises from an endogenous interaction between GR and MR in myeloma cells. Quantitative dimerization assays show that Spi reduces Dex-induced GR-MR heterodimerization and completely abolishes Dex-induced MR-MR homodimerization, while leaving GR-GR homodimerization intact. Unbiased transcriptomics analyses reveal that c-myc and many of its target genes are downregulated most by combined Dex-Spi treatment. Proteomics analyses further identify that several metabolic hallmarks are modulated most by this combination treatment. Finally, we identified a subset of Dex-Spi downregulated genes and proteins that may predict prognosis in the CoMMpass myeloma patient cohort. Our study demonstrates that GR-MR crosstalk is therapeutically relevant in myeloma as it provides novel strategies for glucocorticoid-based dose-reduction.


Asunto(s)
Glucocorticoides , Mieloma Múltiple , Humanos , Glucocorticoides/farmacología , Receptores de Mineralocorticoides/genética , Dexametasona/farmacología , Dexametasona/metabolismo , Dexametasona/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Espironolactona/uso terapéutico
5.
N Engl J Med ; 381(8): 727-738, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31433920

RESUMEN

BACKGROUND: Selinexor, a selective inhibitor of nuclear export compound that blocks exportin 1 (XPO1) and forces nuclear accumulation and activation of tumor suppressor proteins, inhibits nuclear factor κB, and reduces oncoprotein messenger RNA translation, is a potential novel treatment for myeloma that is refractory to current therapeutic options. METHODS: We administered oral selinexor (80 mg) plus dexamethasone (20 mg) twice weekly to patients with myeloma who had previous exposure to bortezomib, carfilzomib, lenalidomide, pomalidomide, daratumumab, and an alkylating agent and had disease refractory to at least one proteasome inhibitor, one immunomodulatory agent, and daratumumab (triple-class refractory). The primary end point was overall response, defined as a partial response or better, with response assessed by an independent review committee. Clinical benefit, defined as a minimal response or better, was a secondary end point. RESULTS: A total of 122 patients in the United States and Europe were included in the modified intention-to-treat population (primary analysis), and 123 were included in the safety population. The median age was 65 years, and the median number of previous regimens was 7; a total of 53% of the patients had high-risk cytogenetic abnormalities. A partial response or better was observed in 26% of patients (95% confidence interval, 19 to 35), including two stringent complete responses; 39% of patients had a minimal response or better. The median duration of response was 4.4 months, median progression-free survival was 3.7 months, and median overall survival was 8.6 months. Fatigue, nausea, and decreased appetite were common and were typically grade 1 or 2 (grade 3 events were noted in up to 25% of patients, and no grade 4 events were reported). Thrombocytopenia occurred in 73% of the patients (grade 3 in 25% and grade 4 in 33%). Thrombocytopenia led to bleeding events of grade 3 or higher in 6 patients. CONCLUSIONS: Selinexor-dexamethasone resulted in objective treatment responses in patients with myeloma refractory to currently available therapies. (Funded by Karyopharm Therapeutics; STORM ClinicalTrials.gov number, NCT02336815.).


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Dexametasona/administración & dosificación , Hidrazinas/administración & dosificación , Carioferinas/antagonistas & inhibidores , Mieloma Múltiple/tratamiento farmacológico , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Triazoles/administración & dosificación , Administración Oral , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Biomarcadores de Tumor/sangre , Dexametasona/efectos adversos , Esquema de Medicación , Resistencia a Antineoplásicos , Femenino , Humanos , Hidrazinas/efectos adversos , Análisis de Intención de Tratar , Masculino , Persona de Mediana Edad , Análisis de Supervivencia , Trombocitopenia/inducido químicamente , Triazoles/efectos adversos , Adulto Joven , Proteína Exportina 1
6.
Eur J Haematol ; 108(5): 369-378, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35030282

RESUMEN

INTRODUCTION: Early-stage chronic lymphocytic leukemia (CLL) challenges specialized management and follow-up. METHODS: We developed and validated a prognostic index to identify newly diagnosed patients without need of treatment (CLL-WONT) by a training/validation approach using data on 4708 patients. Composite scores derived from weighted hazards by multivariable analysis defined CLL-WONT risk groups. RESULTS: Age (>65 years: 1 point), Binet stage (B: 2 points), lactate dehydrogenase (LDH) (>205 U/L: 1 point), absolute lymphocyte count (15-30 × 109 /L: 1 point; >30 × 109 /L; 2 points), ß2-microglobulin (>4 mg/L: 1 point), IGHV mutation status (unmutated: 1 point), and 11q or 17p deletion (1 point) were independently associated with shorter time to first treatment (TTFT). Low-risk patients demonstrated 5-year TTFT of 2% by internal validation, but 7-19% by external validation. Including all patients with complete scores, the 5-year TTFT was 10% for the 756 (39%) CLL-WONT low-risk patients, and the 704 (37%) patients who were both CLL-WONT and CLL-IPI low risk demonstrated even lower 5-year TTFT (8%). CONCLUSION: We have adopted the CLL-WONT at an institution covering 1 800 000 individuals to allow patients with both low-risk CLL-WONT and CLL-IPI to be managed by primary healthcare providers, thereby prioritizing specialized hematology services for patients in dire need.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Anciano , Aberraciones Cromosómicas , Humanos , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/terapia , Mutación , Pronóstico , Factores de Riesgo
7.
Br J Haematol ; 194(1): 120-131, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34036560

RESUMEN

Treatment benefit in multiple myeloma (MM) patients with high-risk cytogenetics remains suboptimal. The phase 3 ICARIA-MM trial (NCT02990338) showed that isatuximab plus pomalidomide-dexamethasone prolongs median progression-free survival (mPFS) in patients with relapsed/refractory MM (RRMM). This subgroup analysis of ICARIA-MM compared the benefit of isatuximab in high-risk [defined by the presence of del(17p), t(4;14) or t(14;16)] versus standard-risk patients. The efficacy of isatuximab in patients with gain(1q21) abnormality was also assessed in a retrospective subgroup analysis. In ICARIA-MM, 307 patients received isatuximab-pomalidomide-dexamethasone (n = 154) or pomalidomide-dexamethasone (n = 153). Isatuximab (10 mg/kg intravenously) was given weekly in the first 28-day cycle, and every other week thereafter. Standard pomalidomide-dexamethasone doses were given. Isatuximab-pomalidomide-dexamethasone improved mPFS (7·5 vs 3·7 months; HR, 0·66; 95% CI, 0·33-1·28) and overall response rate (ORR, 50·0% vs 16·7%) in high-risk patients. In patients with isolated gain(1q21), isatuximab addition improved mPFS (11·2 vs 4·6 months; HR, 0·50; 95% CI, 0·28-0·88) and ORR (53·6% vs 27·6%). More grade ≥3 adverse events occurred in high-risk patients receiving isatuximab (95·7%) versus the control group (67·6%); however, isatuximab did not increase events leading to discontinuation or treatment-related mortality. Isatuximab-pomalidomide-dexamethasone provides a consistent benefit over pomalidomide-dexamethasone treatment in RRMM patients regardless of cytogenetic risk.


Asunto(s)
Ensayos Clínicos Fase III como Asunto/estadística & datos numéricos , Mieloma Múltiple/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto/estadística & datos numéricos , Terapia Recuperativa , Cariotipo Anormal , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Antineoplásicos Inmunológicos/administración & dosificación , Antineoplásicos Inmunológicos/efectos adversos , Cromosomas Humanos Par 1/genética , Dexametasona/administración & dosificación , Neutropenia Febril/inducido químicamente , Femenino , Humanos , Factores Inmunológicos/administración & dosificación , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Mieloma Múltiple/genética , Mieloma Múltiple/mortalidad , Proteínas de Mieloma/análisis , Neumonía/inducido químicamente , Recurrencia , Riesgo , Talidomida/administración & dosificación , Talidomida/análogos & derivados , Trisomía
8.
BMC Cancer ; 21(1): 993, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488662

RESUMEN

BACKGROUND: Selinexor is an oral, selective nuclear export inhibitor. STORM was a phase 2b, single-arm, open-label, multicenter trial of selinexor with low dose dexamethasone in patients with penta-exposed relapsed/refractory multiple myeloma (RRMM) that met its primary endpoint, with overall response of 26% (95% confidence interval [CI], 19 to 35%). Health-related quality of life (HRQoL) was a secondary endpoint measured using the Functional Assessment of Cancer Therapy - Multiple Myeloma (FACT-MM). This study examines impact of selinexor treatment on HRQoL of patients treated in STORM and reports two approaches to calculate minimal clinically important differences for the FACT-MM. METHODS: FACT-MM data were collected at baseline, on day 1 of each 4-week treatment cycle, and at end of treatment (EOT). Changes from baseline were analyzed for the FACT-MM total score, FACT-trial outcome index (TOI), FACT-General (FACT-G), and the MM-specific domain using mixed-effects regression models. Two approaches for evaluating minimal clinically important differences were explored: the first defined as 10% of the instrument range, and the second based on estimated mean baseline differences between Eastern Cooperative Oncology Group performance status (ECOG PS) scores. Post-hoc difference analysis compared change in scores from baseline to EOT for treatment responders and non-responders. RESULTS: Eighty patients were included in the analysis; the mean number of prior therapies was 7.9 (standard deviation [SD] 3.1), and mean duration of myeloma was 7.6 years (SD 3.4). Each exploratory minimal clinically important difference threshold yielded consistent results whereby most patients did not experience HRQoL decline during the first six cycles of treatment (range: 53.9 to 75.7% for the first approach; range: 52.6 to 72.9% for the second). Treatment responders experienced less decline in HRQoL from baseline to EOT than non-responders, which was significant for the FACT-G, but not for other scores. CONCLUSION: The majority of patients did not experience decline in HRQoL based on minimal clinically important differences during early cycles of treatment with selinexor and dexamethasone in the STORM trial. An anchor-based approach utilizing patient-level data (ECOG PS score) to define minimal clinically important differences for the FACT-MM gave consistent results with a distribution-based approach. TRIAL REGISTRATION: This trial was registered on ClinicalTrials.gov under the trial-ID NCT02336815 on January 8, 2015.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resistencia a Antineoplásicos , Mieloma Múltiple/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Calidad de Vida , Adulto , Anciano , Anciano de 80 o más Años , Dexametasona/administración & dosificación , Femenino , Estudios de Seguimiento , Humanos , Hidrazinas/administración & dosificación , Masculino , Persona de Mediana Edad , Mieloma Múltiple/patología , Recurrencia Local de Neoplasia/patología , Pronóstico , Tasa de Supervivencia , Triazoles/administración & dosificación
9.
Br J Cancer ; 120(12): 1137-1146, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31089208

RESUMEN

BACKGROUND: The aggressive B-cell non-Hodgkin lymphomas diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) are characterised by a high proliferation rate. The anaphase-promoting complex/cyclosome (APC/C) and its co-activators Cdc20 and Cdh1 represent an important checkpoint in mitosis. Here, the role of the APC/C and its co-activators is examined in DLBCL and MCL. METHODS: The expression and prognostic value of Cdc20 and Cdh1 was investigated using GEP data and immunohistochemistry. Moreover, the therapeutic potential of APC/C targeting was evaluated using the small-molecule inhibitor proTAME and the underlying mechanisms of action were investigated by western blot. RESULTS: We demonstrated that Cdc20 is highly expressed in DLBCL and aggressive MCL, correlating with a poor prognosis in DLBCL. ProTAME induced a prolonged metaphase, resulting in accumulation of the APC/C-Cdc20 substrate cyclin B1, inactivation/degradation of Bcl-2 and Bcl-xL and caspase-dependent apoptosis. In addition, proTAME strongly enhanced the anti-lymphoma effect of the clinically relevant agents doxorubicin and venetoclax. CONCLUSION: We identified for the first time APC/C as a new, promising target in DLBCL and MCL. Moreover, we provide evidence that Cdc20 might be a novel, independent prognostic factor in DLBCL and MCL.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/antagonistas & inhibidores , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células del Manto/tratamiento farmacológico , Profármacos/farmacología , Tosilarginina Metil Éster/farmacología , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Antígenos CD/biosíntesis , Antígenos CD/genética , Apoptosis/efectos de los fármacos , Cadherinas/biosíntesis , Cadherinas/genética , Proteínas Cdc20/biosíntesis , Proteínas Cdc20/genética , Línea Celular Tumoral , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células del Manto/metabolismo , Linfoma de Células del Manto/patología , Terapia Molecular Dirigida , Pronóstico , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Células Tumorales Cultivadas
10.
Haematologica ; 104(11): 2274-2282, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30923094

RESUMEN

This prospective, multicenter, phase II study investigated the use of four cycles of bortezomib-dexamethasone induction treatment, followed by high-dose melphalan and autologous stem cell transplantation (SCT) in patients with newly diagnosed light chain amyloidosis. The aim of the study was to improve the hematologic complete remission (CR) rate 6 months after SCT from 30% to 50%. Fifty patients were enrolled and 72% had two or more organs involved. The overall hematologic response rate after induction treatment was 80% including 20% CR and 38% very good partial remissions (VGPR). Fifteen patients did not proceed to SCT for various reasons but mostly treatment-related toxicity and disease-related organ damage and death (2 patients). Thirty-one patients received melphalan 200 mg/m2 and four patients a reduced dose because of renal function impairment. There were no deaths related to the transplantation procedure. Hematologic responses improved at 6 months after SCT to 86% with 46% CR and 26% VGPR. However, due to the high treatment discontinuation rate before transplantation the primary endpoint of the study was not met and the CR rate in the intention-to-treat analysis was 32%. Organ responses continued to improve after SCT. We confirm the high efficacy of bortezomib-dexamethasone treatment in patients with AL amyloidosis. However, because of both treatment-related toxicity and disease characteristics, 30% of the patients could not proceed to SCT after induction treatment. (Trial registered at Dutch Trial Register identifier NTR3220).


Asunto(s)
Bortezomib/uso terapéutico , Trasplante de Células Madre Hematopoyéticas , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/terapia , Anciano , Biomarcadores , Bortezomib/administración & dosificación , Bortezomib/efectos adversos , Terapia Combinada , Progresión de la Enfermedad , Femenino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/diagnóstico , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/mortalidad , Inmunofenotipificación , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Trasplante Autólogo , Resultado del Tratamiento
11.
Insights Imaging ; 15(1): 106, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597979

RESUMEN

OBJECTIVES: Cytogenetic abnormalities are predictors of poor prognosis in multiple myeloma (MM). This paper aims to build and validate a multiparametric conventional and functional whole-body MRI-based prediction model for cytogenetic risk classification in newly diagnosed MM. METHODS: Patients with newly diagnosed MM who underwent multiparametric conventional whole-body MRI, spinal dynamic contrast-enhanced (DCE-)MRI, spinal diffusion-weighted MRI (DWI) and had genetic analysis were retrospectively included (2011-2020/Ghent University Hospital/Belgium). Patients were stratified into standard versus intermediate/high cytogenetic risk groups. After segmentation, 303 MRI features were extracted. Univariate and model-based methods were evaluated for feature and model selection. Testing was performed using receiver operating characteristic (ROC) and precision-recall curves. Models comparing the performance for genetic risk classification of the entire MRI protocol and of all MRI sequences separately were evaluated, including all features. Four final models, including only the top three most predictive features, were evaluated. RESULTS: Thirty-one patients were enrolled (mean age 66 ± 7 years, 15 men, 13 intermediate-/high-risk genetics). None of the univariate models and none of the models with all features included achieved good performance. The best performing model with only the three most predictive features and including all MRI sequences reached a ROC-area-under-the-curve of 0.80 and precision-recall-area-under-the-curve of 0.79. The highest statistical performance was reached when all three MRI sequences were combined (conventional whole-body MRI + DCE-MRI + DWI). Conventional MRI always outperformed the other sequences. DCE-MRI always outperformed DWI, except for specificity. CONCLUSIONS: A multiparametric MRI-based model has a better performance in the noninvasive prediction of high-risk cytogenetics in newly diagnosed MM than conventional MRI alone. CRITICAL RELEVANCE STATEMENT: An elaborate multiparametric MRI-based model performs better than conventional MRI alone for the noninvasive prediction of high-risk cytogenetics in newly diagnosed multiple myeloma; this opens opportunities to assess genetic heterogeneity thus overcoming sampling bias. KEY POINTS: • Standard genetic techniques in multiple myeloma patients suffer from sampling bias due to tumoral heterogeneity. • Multiparametric MRI noninvasively predicts genetic risk in multiple myeloma. • Combined conventional anatomical MRI, DCE-MRI, and DWI had the highest statistical performance to predict genetic risk. • Conventional MRI alone always outperformed DCE-MRI and DWI separately to predict genetic risk. DCE-MRI alone always outperformed DWI separately, except for the parameter specificity to predict genetic risk. • This multiparametric MRI-based genetic risk prediction model opens opportunities to noninvasively assess genetic heterogeneity thereby overcoming sampling bias in predicting genetic risk in multiple myeloma.

12.
Hum Mutat ; 34(1): 111-21, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22829427

RESUMEN

Autosomal recessive cutis laxa type I (ARCL type I) is characterized by generalized cutis laxa with pulmonary emphysema and/or vascular complications. Rarely, mutations can be identified in FBLN4 or FBLN5. Recently, LTBP4 mutations have been implicated in a similar phenotype. Studying FBLN4, FBLN5, and LTBP4 in 12 families with ARCL type I, we found bi-allelic FBLN5 mutations in two probands, whereas nine probands harbored biallelic mutations in LTBP4. FBLN5 and LTBP4 mutations cause a very similar phenotype associated with severe pulmonary emphysema, in the absence of vascular tortuosity or aneurysms. Gastrointestinal and genitourinary tract involvement seems to be more severe in patients with LTBP4 mutations. Functional studies showed that most premature termination mutations in LTBP4 result in severely reduced mRNA and protein levels. This correlated with increased transforming growth factor-beta (TGFß) activity. However, one mutation, c.4127dupC, escaped nonsense-mediated decay. The corresponding mutant protein (p.Arg1377Alafs(*) 27) showed reduced colocalization with fibronectin, leading to an abnormal morphology of microfibrils in fibroblast cultures, while retaining normal TGFß activity. We conclude that LTBP4 mutations cause disease through both loss of function and gain of function mechanisms.


Asunto(s)
Cutis Laxo/genética , Proteínas de la Matriz Extracelular/genética , Proteínas de Unión a TGF-beta Latente/genética , Mutación , Adolescente , Secuencia de Bases , Western Blotting , Niño , Preescolar , Consanguinidad , Cutis Laxo/complicaciones , Proteínas de la Matriz Extracelular/metabolismo , Salud de la Familia , Femenino , Expresión Génica , Humanos , Lactante , Proteínas de Unión a TGF-beta Latente/metabolismo , Masculino , Microscopía Electrónica , Linaje , Enfisema Pulmonar/complicaciones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Piel/metabolismo , Piel/patología , Piel/ultraestructura , Adulto Joven
13.
J Immunother Cancer ; 11(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36650020

RESUMEN

BACKGROUND: Immunotherapy emerged as a promising treatment option for multiple myeloma (MM) patients. However, therapeutic efficacy can be hampered by the presence of an immunosuppressive bone marrow microenvironment including myeloid cells. S100A9 was previously identified as a key regulator of myeloid cell accumulation and suppressive activity. Tasquinimod, a small molecule inhibitor of S100A9, is currently in a phase Ib/IIa clinical trial in MM patients (NCT04405167). We aimed to gain more insights into its mechanisms of action both on the myeloma cells and the immune microenvironment. METHODS: We analyzed the effects of tasquinimod on MM cell viability, cell proliferation and downstream signaling pathways in vitro using RNA sequencing, real-time PCR, western blot analysis and multiparameter flow cytometry. Myeloid cells and T cells were cocultured at different ratios to assess tasquinimod-mediated immunomodulatory effects. The in vivo impact on immune cells (myeloid cell subsets, macrophages, dendritic cells), tumor load, survival and bone disease were elucidated using immunocompetent 5TMM models. RESULTS: Tasquinimod treatment significantly decreased myeloma cell proliferation and colony formation in vitro, associated with an inhibition of c-MYC and increased p27 expression. Tasquinimod-mediated targeting of the myeloid cell population resulted in increased T cell proliferation and functionality in vitro. Notably, short-term tasquinimod therapy of 5TMM mice significantly increased the total CD11b+ cells and shifted this population toward a more immunostimulatory state, which resulted in less myeloid-mediated immunosuppression and increased T cell activation ex vivo. Tasquinimod significantly reduced the tumor load and increased the trabecular bone volume, which resulted in prolonged overall survival of MM-bearing mice in vivo. CONCLUSION: Our study provides novel insights in the dual therapeutic effects of the immunomodulator tasquinimod and fosters its evaluation in combination therapy trials for MM patients.


Asunto(s)
Resorción Ósea , Mieloma Múltiple , Quinolonas , Animales , Ratones , Resorción Ósea/metabolismo , Resorción Ósea/patología , Proliferación Celular , Inmunosupresores/farmacología , Mieloma Múltiple/patología , Células Mieloides/metabolismo , Quinolonas/farmacología , Quinolonas/uso terapéutico , Quinolonas/metabolismo , Microambiente Tumoral , Humanos
14.
Acta Clin Belg ; 77(2): 410-415, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33433292

RESUMEN

A 61-year-old female presented with pancytopenia with a hemoglobin of 7.6 g/dL, platelet count of 26.000/µL and neutrophil count of 525/µL. Bone marrow aspirate showed moderately cellular marrow with a dysplastic erythroid lineage and poor megakaryo- and granulopoiesis without excessive blast count. Trephine biopsy revealed profoundly hypocellular marrow with rare hematopoietic elements. Conventional karyotyping was normal and next generation sequencing revealed no mutations. These findings were compatible with transfusion dependent, non-severe aplastic anaemia (AA) with grade 3 thrombopenia and neutropenia. However, diagnostic workup including CT thorax revealed unexpected sclerotic bone conversions in the spine. Additional whole body SPECT with 99mTc-HDP showed multiple bone lesions in the cervical, thoracic and lumbar spine. CT guided biopsy of D12 surprisingly revealed normal trilineage hematopoiesis. These results were very discrepant from the profoundly hypocellular marrow from the trephine biopsy. It is known that in AA residual hyperactive foci of hematopoiesis can persist; so called 'hot pockets'. MRI is the preferred imaging technique in AA; in most cases a homogeneous fatty bone marrow is found, though some patients present with a heterogeneous marrow with foci of decreased intensity, corresponding with residual foci of hematopoiesis. Imaging studies with PET-CT and PET-MRI confirm these different patterns with respectively homogeneous hypometabolism and hypometabolism with focal hyperproliferation. However, there is no previous literature on the aspect of this focal hematopoiesis on computed tomography. This is the first description of a 'hot pocket' manifesting as a sclerotic bone lesion on CT.


Asunto(s)
Anemia Aplásica , Neoplasias Óseas , Pancitopenia , Anemia Aplásica/diagnóstico , Anemia Aplásica/patología , Médula Ósea/patología , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/patología , Femenino , Humanos , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones
15.
Front Cell Dev Biol ; 10: 879057, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757005

RESUMEN

Multiple myeloma (MM) is an incurable clonal plasma cell malignancy. Subsets of patients have high-risk features linked with dismal outcome. Therefore, the need for effective therapeutic options remains high. Here, we used bio-informatic tools to identify novel targets involved in DNA repair and epigenetics and which are associated with high-risk myeloma. The prognostic significance of the target genes was analyzed using publicly available gene expression data of MM patients (TT2/3 and HM cohorts). Hence, protein arginine methyltransferase 5 (PRMT5) was identified as a promising target. Druggability was assessed in OPM2, JJN3, AMO1 and XG7 human myeloma cell lines using the PRMT5-inhibitor EPZ015938. EPZ015938 strongly reduced the total symmetric-dimethyl arginine levels in all cell lines and lead to decreased cellular growth, supported by cell line dependent changes in cell cycle distribution. At later time points, apoptosis occurred, as evidenced by increased AnnexinV-positivity and cleavage of PARP and caspases. Transcriptome analysis revealed a role for PRMT5 in regulating alternative splicing, nonsense-mediated decay, DNA repair and PI3K/mTOR-signaling, irrespective of the cell line type. PRMT5 inhibition reduced the expression of upstream DNA repair kinases ATM and ATR, which may in part explain our observation that EPZ015938 and the DNA-alkylating agent, melphalan, have combinatory effects. Of interest, using a low-dose of mTOR-inhibitor, we observed that cell viability was partially rescued from the effects of EPZ015938, indicating a role for mTOR-related pathways in the anti-myeloma activity of EPZ015938. Moreover, PRMT5 was shown to be involved in splicing regulation of MMSET and SLAMF7, known genes of importance in MM disease. As such, we broaden the understanding of the exact role of PRMT5 in MM disease and further underline its use as a possible therapeutic target.

16.
J Exp Clin Cancer Res ; 41(1): 45, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35105345

RESUMEN

BACKGROUND: Multiple myeloma (MM) remains an incurable cancer despite advances in therapy. Therefore, the search for new targets is still essential to uncover potential treatment strategies. Metabolic changes, induced by the hypoxic bone marrow, contribute to both MM cell survival and drug resistance. Pyrroline-5-carboxylate reductase 1 and 2 (PYCR1 and PYCR2) are two mitochondrial enzymes that facilitate the last step in the glutamine-to-proline conversion. Overexpression of PYCR1 is involved in progression of several cancers, however, its' role in hematological cancers is unknown. In this study, we investigated whether PYCR affects MM viability, proliferation and response to bortezomib. METHODS: Correlation of PYCR1/2 with overall survival was investigated in the MMRF CoMMpass trial (653 patients). OPM-2 and RPMI-8226 MM cell lines were used to perform in vitro experiments. RPMI-8226 cells were supplemented with 13C-glutamine for 48 h in both normoxia and hypoxia (< 1% O2, by chamber) to perform a tracer study. PYCR1 was inhibited by siRNA or the small molecule inhibitor pargyline. Apoptosis was measured using Annexin V and 7-AAD staining, viability by CellTiterGlo assay and proliferation by BrdU incorporation. Differential protein expression was evaluated using Western Blot. The SUnSET method was used to measure protein synthesis. All in vitro experiments were performed in hypoxic conditions. RESULTS: We found that PYCR1 and PYCR2 mRNA expression correlated with an inferior overall survival. MM cells from relapsed/refractory patients express significantly higher levels of PYCR1 mRNA. In line with the strong expression of PYCR1, we performed a tracer study in RPMI-8226 cells, which revealed an increased conversion of 13C-glutamine to proline in hypoxia. PYCR1 inhibition reduced MM viability and proliferation and increased apoptosis. Mechanistically, we found that PYCR1 silencing reduced protein levels of p-PRAS40, p-mTOR, p-p70, p-S6, p-4EBP1 and p-eIF4E levels, suggesting a decrease in protein synthesis, which we also confirmed in vitro. Pargyline and siPYCR1 increased bortezomib-mediated apoptosis. Finally, combination therapy of pargyline with bortezomib reduced viability in CD138+ MM cells and reduced tumor burden in the murine 5TGM1 model compared to single agents. CONCLUSIONS: This study identifies PYCR1 as a novel target in bortezomib-based combination therapies for MM.


Asunto(s)
Antineoplásicos/uso terapéutico , Bortezomib/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Inhibidores de la Síntesis de la Proteína/uso terapéutico , Pirrolina Carboxilato Reductasas/uso terapéutico , Animales , Antineoplásicos/farmacología , Bortezomib/farmacología , Proliferación Celular , Humanos , Ratones , Mieloma Múltiple/mortalidad , Mieloma Múltiple/patología , Inhibidores de la Síntesis de la Proteína/farmacología , Pirrolina Carboxilato Reductasas/farmacología , Análisis de Supervivencia
17.
Cancer Lett ; 535: 215649, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35315341

RESUMEN

Multiple myeloma (MM) cells derive proliferative signals from the bone marrow (BM) microenvironment via exosomal crosstalk. Therapeutic strategies targeting this crosstalk are still lacking. Bortezomib resistance in MM cells is linked to elevated expression of xCT (the subunit of system Xc-). Extracellular glutamate released by system Xc- can bind to glutamate metabotropic receptor (GRM) 3, thereby upregulating Rab27-dependent vesicular trafficking. Since Rab27 is also involved in exosome biogenesis, we aimed to investigate the role of system Xc- in exosomal communication between BM stromal cells (BMSCs) and MM cells. We observed that expression of xCT and GRMs was increased after bortezomib treatment in both BMSCs and MM cells. Secretion of glutamate and exosomes was simultaneously enhanced which could be countered by inhibition of system Xc- or GRMs. Moreover, glutamate supplementation increased exosome secretion by increasing expression of Alix, TSG101, Rab27a/b and VAMP7. Importantly, the system Xc- inhibitor sulfasalazine reduced BMSC-induced resistance to bortezomib in MM cells in vitro and enhanced its anti-MM effects in vivo. These findings suggest that system Xc- plays an important role within the BM and could be a potential target in MM.


Asunto(s)
Exosomas , Mieloma Múltiple , Apoptosis , Médula Ósea/metabolismo , Bortezomib/farmacología , Bortezomib/uso terapéutico , Exosomas/metabolismo , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Microambiente Tumoral
18.
Clin Lymphoma Myeloma Leuk ; 21(1): 46-54.e4, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33485428

RESUMEN

BACKGROUND: Daratumumab is approved for relapsed or refractory multiple myeloma (RRMM) as monotherapy or in combination regimens. We evaluated daratumumab plus cetrelimab, a programmed death receptor-1 inhibitor, in RRMM. PATIENTS AND METHODS: This open-label, multiphase study enrolled adults with RRMM with ≥ 3 prior lines of therapy. Part 1 was a safety run-in phase examining dose-limiting toxicities of daratumumab (16 mg/kg intravenously weekly for cycles 1-2, biweekly for cycles 3-6, and monthly thereafter) plus cetrelimab (240 mg intravenously biweekly, all cycles). In Parts 2 and 3, patients were to be randomized to daratumumab with or without cetrelimab (same schedule as Part 1). Endpoints included safety, overall response rate, pharmacokinetics, and biomarker analyses. RESULTS: Nine patients received daratumumab plus cetrelimab in the safety run-in, and 1 received daratumumab in Part 2 before administrative study termination following a data monitoring committee's global recommendation to stop any trial including daratumumab combined with inhibitors of programmed death receptor-1 or its ligand (programmed death-ligand 1). The median follow-up times were 6.7 months (safety run-in) and 0.3 months (Part 2). No dose-limiting toxicities occurred. All 10 patients had ≥ 1 treatment-emergent adverse event; 7 patients had grade 3 to 4 treatment-emergent adverse events, and none led to treatment discontinuation or death. In the safety run-in, 7 (77.7%) patients had ≥ 1 infusion-related reaction (most grade 1-2), and 1 had a grade 2 immune-mediated reaction. Among safety run-in patients, the overall response rate was 44.4%. CONCLUSIONS: No new safety concerns were identified for daratumumab plus cetrelimab in RRMM. The short study duration and small population limit complete analysis of this combination.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Adulto , Anciano , Anticuerpos Monoclonales/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mieloma Múltiple/mortalidad , Análisis de Supervivencia
19.
Oncoimmunology ; 10(1): 2000699, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777918

RESUMEN

Multiple myeloma (MM) is a hematological malignancy characterized by the presence of clonal plasma cells in the bone marrow niche. Despite significant therapeutic advances, MM remains incurable for the majority of patients. Targeted radionuclide therapy (TRNT) has emerged as a promising treatment option to eradicate residual cancer cells. In this study, we developed and characterized single-domain antibodies (sdAbs) against the MM-antigen CS1 and evaluated its therapeutic potential in MM using TRNT. We first validated CS1 as potential target for TRNT. CS1 is expressed in normal and malignant plasma cells in different disease stages including progression and relapse. It is expressed in dormant as well as proliferating MM cells, while low expression could be observed in environmental cells. Biodistribution studies demonstrated the specific uptake of anti-CS1 sdAbs in tissues of 5TMM cell infiltration including bone, spleen and liver. TRNT using anti-CS1 sdAbs labeled with actinium-225 significantly prolonged survival of syngeneic, immunocompetent 5T33MM mice. In addition, we observed an increase in CD8+ T-cells and more overall PD-L1 expression on immune and non-immune cells, implying an interferon gamma signature using actinium-225 labeled CS1-directed sdAbs. In this proof-of-principle study, we highlight, for the first time, the therapeutic potential and immunomodulating effects of anti-CS1 radionuclide therapy to target residual MM cells.


Asunto(s)
Mieloma Múltiple , Anticuerpos de Dominio Único , Actinio , Animales , Antígeno B7-H1 , Linfocitos T CD8-positivos , Humanos , Ratones , Mieloma Múltiple/terapia , Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Blood Adv ; 5(9): 2325-2338, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33938943

RESUMEN

Multiple myeloma (MM) is an (epi)genetic highly heterogeneous plasma cell malignancy that remains mostly incurable. Deregulated expression and/or genetic defects in epigenetic-modifying enzymes contribute to high-risk disease and MM progression. Overexpression of the histone methyltransferase G9a was reported in several cancers, including MM, correlating with disease progression, metastasis, and poor prognosis. However, the exact role of G9a and its interaction partner G9a-like protein (GLP) in MM biology and the underlying mechanisms of action remain poorly understood. Here, we report that high G9a RNA levels are associated with a worse disease outcome in newly diagnosed and relapsed MM patients. G9a/GLP targeting using the specific G9a/GLP inhibitors BIX01294 and UNC0638 induces a G1-phase arrest and apoptosis in MM cell lines and reduces primary MM cell viability. Mechanistic studies revealed that G9a/GLP targeting promotes autophagy-associated apoptosis by inactivating the mTOR/4EBP1 pathway and reducing c-MYC levels. Moreover, genes deregulated by G9a/GLP targeting are associated with repressive histone marks. G9a/GLP targeting sensitizes MM cells to the proteasome inhibitors (PIs) bortezomib and carfilzomib, by (further) reducing mTOR signaling and c-MYC levels and activating p-38 and SAPK/JNK signaling. Therapeutic treatment of 5TGM1 mice with BIX01294 delayed in vivo MM tumor growth, and cotreatment with bortezomib resulted in a further reduction in tumor burden and a significantly prolonged survival. In conclusion, we provide evidence that the histone methyltransferases G9a/GLP support MM cell growth and survival by blocking basal autophagy and sustaining high c-MYC levels. G9a/GLP targeting represents a promising strategy to improve PI-based treatment in patients with high G9a/GLP levels.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Mieloma Múltiple , Animales , Apoptosis , Autofagia , Muerte Celular , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Ratones , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Inhibidores de Proteasoma/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA