Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Imaging ; 16: 1536012117732439, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29271299

RESUMEN

Assessment of muscle pathology is a key outcome measure to measure the success of clinical trials studying muscular dystrophies; however, few robust minimally invasive measures exist. Indocyanine green (ICG)-enhanced near-infrared (NIR) optical imaging offers an objective, minimally invasive, and longitudinal modality that can quantify pathology within muscle by imaging uptake of ICG into the damaged muscles. Dystrophic mice lacking dystrophin (mdx) or gamma-sarcoglycan (Sgcg-/-) were compared to control mice by NIR optical imaging and magnetic resonance imaging (MRI). We determined that optical imaging could be used to differentiate control and dystrophic mice, visualize eccentric muscle induced by downhill treadmill running, and restore the membrane integrity in Sgcg-/- mice following adeno-associated virus (AAV) delivery of recombinant human SGCG (desAAV8hSGCG). We conclude that NIR optical imaging is comparable to MRI and can be used to detect muscle damage in dystrophic muscle as compared to unaffected controls, monitor worsening of muscle pathology in muscular dystrophy, and assess regression of pathology following therapeutic intervention in muscular dystrophies.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Distrofias Musculares/diagnóstico por imagen , Imagen Óptica/métodos , Sarcoglicanos/genética , Animales , Medios de Contraste , Modelos Animales de Enfermedad , Distrofina/genética , Terapia Genética , Vectores Genéticos/administración & dosificación , Humanos , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/diagnóstico por imagen , Distrofias Musculares/genética , Distrofias Musculares/terapia , Sarcoglicanos/administración & dosificación
2.
Am J Pathol ; 186(10): 2692-700, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27565039

RESUMEN

Muscle damage is currently assessed through methods such as muscle biopsy, serum biomarkers, functional testing, and imaging procedures, each with its own inherent limitations, and a pressing need for a safe, repeatable, inexpensive, and noninvasive modality to assess the state of muscle health remains. Our aim was to develop and assess near-infrared (NIR) optical imaging as a novel noninvasive method of detecting and quantifying muscle damage. An immobilization-reambulation model was used for inducing muscle damage and recovery in the lower hindlimbs in mice. Confirmation of muscle damage was obtained using in vivo indocyanine green-enhanced NIR optical imaging, magnetic resonance imaging, and ex vivo tissue analysis. The soleus of the immobilized-reambulated hindlimb was found to have a greater amount of muscle damage compared to that in the contralateral nonimmobilized limb, confirmed by in vivo indocyanine green-enhanced NIR optical imaging (3.86-fold increase in radiant efficiency), magnetic resonance imaging (1.41-fold increase in T2), and an ex vivo spectrophotometric assay of indocyanine green uptake (1.87-fold increase in normalized absorbance). Contrast-enhanced NIR optical imaging provides a sensitive, rapid, and noninvasive screening method that can be used for imaging and quantifying muscle damage and recovery in vivo.


Asunto(s)
Colorantes , Verde de Indocianina , Músculo Esquelético/diagnóstico por imagen , Imagen Óptica/métodos , Animales , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/lesiones , Músculo Esquelético/patología , Sensibilidad y Especificidad , Espectroscopía Infrarroja Corta , Factores de Tiempo
3.
Muscle Nerve ; 53(1): 84-90, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25846867

RESUMEN

INTRODUCTION: Magnetic resonance imaging (MRI) was used to monitor changes in the transverse relaxation time constant (T2) in lower hindlimb muscles of mdx mice at different ages. METHODS: Young (5 weeks), adult (44 weeks), and old mdx (96 weeks), and age-matched control mice were studied. Young mdx mice were imaged longitudinally, whereas adult and old mdx mice were imaged at a single time-point. RESULTS: Mean muscle T2 and percent of pixels with elevated T2 were significantly different between mdx and control mice at all ages. In young mdx mice, mean muscle T2 peaked at 7-8 weeks and declined at 9-11 weeks. In old mdx mice, mean muscle T2 was decreased compared with young and adult mice, which could be attributed to fibrosis. CONCLUSIONS: MRI captured longitudinal changes in skeletal muscle integrity of mdx mice. This information will be valuable for pre-clinical testing of potential therapeutic interventions for muscular dystrophy.


Asunto(s)
Envejecimiento/patología , Miembro Posterior/patología , Imagen por Resonancia Magnética , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Análisis de Varianza , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética
4.
Muscle Nerve ; 43(6): 878-86, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21488051

RESUMEN

INTRODUCTION: In this study we compared the effects of downhill or horizontal treadmill running on the magnetic resonance imaging (MRI) transverse relaxation time constant (T(2)) in mdx mice. METHODS: Mice underwent either downhill (n = 11 mdx, n = 6 controls) or horizontal running (n = 9, mdx only) on a treadmill. MRI was conducted prior to exercise, immediately afterward (∽20 minutes), and then 24 and 48 hours after exercise. RESULTS: A higher percentage of pixels with elevated T(2) in the lower hindlimb muscles was observed in the mdx mice compared with controls both pre-exercise (P < 0.001) and at each time-point after downhill running (P < 0.05), but not with horizontal running. The medial compartment muscles appeared to be the most susceptible to increased T(2). CONCLUSIONS: Downhill running provides a stimulus for inducing acute changes in muscle T(2) in mdx mice. MRI is a non-invasive approach for examining acute muscle damage and recovery in multiple muscle groups simultaneously.


Asunto(s)
Traumatismos de la Pierna/diagnóstico , Músculo Esquelético/lesiones , Carrera/lesiones , Animales , Modelos Animales de Enfermedad , Prueba de Esfuerzo/métodos , Traumatismos de la Pierna/patología , Traumatismos de la Pierna/fisiopatología , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofia Muscular Animal/diagnóstico , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/fisiopatología , Condicionamiento Físico Animal/efectos adversos , Condicionamiento Físico Animal/métodos
5.
Arch Phys Med Rehabil ; 91(7): 1051-8, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20599043

RESUMEN

OBJECTIVE: To examine the relationship between lower-extremity muscle cross-sectional area, muscle strength, specific torque, and age in ambulatory boys with Duchenne muscular dystrophy (DMD) compared with controls. DESIGN: Observational cross-sectional study. SETTING: University research setting. PARTICIPANTS: Volunteer sample of boys with DMD (n=22) and healthy control boys (n=10), ages 5 through 14 years. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Maximal muscle cross-sectional area (CSA(max)) assessed by magnetic resonance imaging of quadriceps, plantarflexors (PFs) and dorsiflexors (DFs), peak isometric torque from dynamometry, and timed functional tests. RESULTS: The average CSA(max) of the triceps surae muscle group was approximately 60% higher in boys with DMD compared with controls (39.1+/-13.6 cm(2) vs 24.5+/-9.3 cm(2); P=.002), while the tibialis anterior muscle showed age-appropriate increases in CSA(max). The increase in quadriceps CSA(max) was also distinctly different in boys with DMD compared with controls. Specific torque (ie, peak torque/CSA(max)) was impaired in all 3 muscles groups, with the knee extensor (KE) and PF muscles showing 4-fold, and the DF muscles 2-fold, higher values in controls compared with boys with DMD. Large age-related gains in specific torque were observed in all 3 muscle groups of control subjects, which were absent in ambulatory boys with DMD. Correlations were observed between performance on functional tasks and quadriceps and PF torque production (r=-.45 to -.57, P<.05), but not with DF strength. CONCLUSIONS: Age-related changes in muscle cross-sectional area and specific torque production in lower-extremity muscles showed distinctly different patterns in the KE, PF, and DF muscles of boys with DMD compared with controls.


Asunto(s)
Desarrollo Humano/fisiología , Extremidad Inferior/fisiopatología , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/fisiopatología , Adolescente , Factores de Edad , Fenómenos Biomecánicos , Niño , Preescolar , Estudios Transversales , Humanos , Contracción Isométrica , Extremidad Inferior/crecimiento & desarrollo , Imagen por Resonancia Magnética , Masculino , Fuerza Muscular , Músculo Esquelético/crecimiento & desarrollo , Torque
6.
Cancer Res ; 80(9): 1861-1874, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32132110

RESUMEN

Skeletal muscle wasting is a devastating consequence of cancer that contributes to increased complications and poor survival, but is not well understood at the molecular level. Herein, we investigated the role of Myocilin (Myoc), a skeletal muscle hypertrophy-promoting protein that we showed is downregulated in multiple mouse models of cancer cachexia. Loss of Myoc alone was sufficient to induce phenotypes identified in mouse models of cancer cachexia, including muscle fiber atrophy, sarcolemmal fragility, and impaired muscle regeneration. By 18 months of age, mice deficient in Myoc showed significant skeletal muscle remodeling, characterized by increased fat and collagen deposition compared with wild-type mice, thus also supporting Myoc as a regulator of muscle quality. In cancer cachexia models, maintaining skeletal muscle expression of Myoc significantly attenuated muscle loss, while mice lacking Myoc showed enhanced muscle wasting. Furthermore, we identified the myocyte enhancer factor 2 C (MEF2C) transcription factor as a key upstream activator of Myoc whose gain of function significantly deterred cancer-induced muscle wasting and dysfunction in a preclinical model of pancreatic ductal adenocarcinoma (PDAC). Finally, compared with noncancer control patients, MYOC was significantly reduced in skeletal muscle of patients with PDAC defined as cachectic and correlated with MEF2c. These data therefore identify disruptions in MEF2c-dependent transcription of Myoc as a novel mechanism of cancer-associated muscle wasting that is similarly disrupted in muscle of patients with cachectic cancer. SIGNIFICANCE: This work identifies a novel transcriptional mechanism that mediates skeletal muscle wasting in murine models of cancer cachexia that is disrupted in skeletal muscle of patients with cancer exhibiting cachexia.


Asunto(s)
Caquexia/complicaciones , Proteínas del Citoesqueleto/metabolismo , Proteínas del Ojo/metabolismo , Glicoproteínas/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Síndrome Debilitante/etiología , Animales , Composición Corporal , Caquexia/metabolismo , Carcinoma Ductal Pancreático/complicaciones , Carcinoma Ductal Pancreático/metabolismo , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Diafragma/fisiología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Proteínas del Ojo/genética , Femenino , Glicoproteínas/deficiencia , Glicoproteínas/genética , Xenoinjertos , Humanos , Factores de Transcripción MEF2/metabolismo , Masculino , Ratones , Músculo Esquelético/patología , Atrofia Muscular , Enfermedades Musculares/etiología , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/metabolismo , ARN Mensajero/metabolismo , Regeneración , Carrera , Sarcolema , Síndrome Debilitante/metabolismo , Síndrome Debilitante/prevención & control
7.
J Appl Physiol (1985) ; 126(6): 1737-1745, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30946638

RESUMEN

Lack of sarcolemma-localized neuronal nitric oxide synthase mu (nNOSµ) contributes to muscle damage and fatigue in dystrophic muscle. In this study, we examined the effects of compensating for lack of nNOSµ with a phosphodiesterase type 5 (PDE5) inhibitor in mdx mice following downhill running and endurance training. Dystrophic mice (mdx) were treated with sildenafil citrate and compared with untreated mdx and wild-type mice after an acute bout of downhill running and during a progressive low-intensity treadmill running program (5 days/wk, 4 wk). Magnetic resonance imaging (MRI) and spectroscopy (MRS) transverse relaxation time constant (T2) of hindlimb and forelimb muscles were measured as a marker of muscle damage after downhill running and throughout training. The MRI blood oxygenation level dependence (BOLD) response and 31phosphorus MRS (31P-MRS) data were acquired after stimulated muscle contractions. After downhill running, the increase in T2 was attenuated (P < 0.05) in treated mdx and wild-type mice compared with untreated mdx. During training, resting T2 values did not change in wild-type and mdx mice from baseline values; however, the running distance completed during training was greater (P < 0.05) in treated mdx (>90% of target distance) and wild-type (100%) than untreated mdx (60%). The post-contractile BOLD response was greater (P < 0.05) in treated mdx that trained than untreated mdx, with no differences in muscle oxidative capacity, as measured by 31P-MRS. Our findings indicate that PDE5 inhibition reduces muscle damage after a single bout of downhill running and improves performance during endurance training in dystrophic mice, possibly because of enhanced microvascular function. NEW & NOTEWORTHY This study examined the combined effects of PDE5 inhibition and exercise in dystrophic muscle using high-resolution magnetic resonance imaging and spectroscopy. Our findings demonstrated that sildenafil citrate reduces muscle damage after a single bout of downhill running, improves endurance-training performance, and enhances microvascular function in dystrophic muscle. Collectively, the results support the combination of exercise and PDE5 inhibition as a therapeutic approach in muscular dystrophies lacking nNOSµ.


Asunto(s)
Músculo Esquelético/efectos de los fármacos , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 5/farmacología , Condicionamiento Físico Animal/fisiología , Animales , Entrenamiento Aeróbico/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Contracción Muscular/fisiología , Sarcolema/efectos de los fármacos , Citrato de Sildenafil/farmacología
8.
Mol Ther Methods Clin Dev ; 7: 42-49, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29018835

RESUMEN

The development of therapeutic clinical trials for glycogen storage disorders, including Pompe disease, has called for non-invasive and objective biomarkers. Glycogen accumulation can be measured in vivo with 13C MRS. However, clinical implementation remains challenging due to low signal-to-noise. On the other hand, the buildup of glycolytic intermediates may be detected with 31P MRS. We sought to identify new biomarkers of disease progression in muscle using 13C/31P MRS and 1H HR-MAS in a mouse model of Pompe disease (Gaa-/-). We evaluated the sensitivity of these MR biomarkers in vivo after treatment using an adeno-associated virus vector 2/9 encoding hGAA driven by the desmin promotor. 31P MRS showed significantly elevated phosphomonoesters (PMEs) in Gaa-/- compared to control at 2 (0.06 ± 0.02 versus 0.03 ± 0.01; p = 0.003), 6, 12, and 18 months of age. Correlative 1H HR-MAS measures in intact gastrocnemius muscles revealed high glucose-6-phosphate (G-6-P). After intramuscular AAV injections, glycogen, PME, and G-6-P were decreased within normal range. The changes in PME levels likely partly resulted from changes in G-6-P, one of the overlapping phosphomonoesters in the 31P MR spectra in vivo. Because 31P MRS is inherently more sensitive than 13C MRS, PME levels have greater potential as a clinical biomarker and should be considered as a complementary approach for future studies in Pompe patients.

9.
PLoS One ; 10(6): e0128915, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26103164

RESUMEN

INTRODUCTION: The primary objectives of this study were to evaluate contractile and non-contractile content of lower leg muscles of boys with Duchenne muscular dystrophy (DMD) and determine the relationships between non-contractile content and functional abilities. METHODS: Lower leg muscles of thirty-two boys with DMD and sixteen age matched unaffected controls were imaged. Non-contractile content, contractile cross sectional area and non-contractile cross sectional area of lower leg muscles (tibialis anterior, extensor digitorum longus, peroneal, medial gastrocnemius and soleus) were assessed by magnetic resonance imaging (MRI). Muscle strength, timed functional tests and the Brooke lower extremity score were also assessed. RESULTS: Non-contractile content of lower leg muscles (peroneal, medial gastrocnemius, and soleus) was significantly greater than control group (p<0.05). Non-contractile content of lower leg muscles correlated with Brooke score (rs = 0.64-0.84) and 30 feet walk (rs = 0.66-0.80). Dorsiflexor (DF) and plantarflexor (PF) specific torque was significantly different between the groups. DISCUSSION: Overall, non-contractile content of the lower leg muscles was greater in DMD than controls. Furthermore, there was an age dependent increase in contractile content in the medial gastrocnemius of boys with DMD. The findings of this study suggest that T1 weighted MR images can be used to monitor disease progression and provide a quantitative estimate of contractile and non-contractile content of tissue in children with DMD.


Asunto(s)
Hipertrofia/fisiopatología , Pierna/fisiopatología , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/fisiopatología , Niño , Preescolar , Humanos , Imagen por Resonancia Magnética , Masculino , Contracción Muscular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA