Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Anal Chem ; 95(49): 18039-18045, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38047498

RESUMEN

α-Synuclein is an intrinsically disordered protein that plays a critical role in the pathogenesis of neurodegenerative disorders, such as Parkinson's disease. Proteomics studies of human brain samples have associated the modification of the O-linked N-acetyl-glucosamine (O-GlcNAc) to several synucleinopathies; in particular, the position of the O-GlcNAc can regulate protein aggregation and subsequent cell toxicity. There is a need for site specific O-GlcNAc α-synuclein screening tools to direct better therapeutic strategies. In the present work, for the first time, the potential of fast, high-resolution trapped ion mobility spectrometry (TIMS) preseparation in tandem with mass spectrometry assisted by an electromagnetostatic (EMS) cell, capable of electron capture dissociation (ECD), and ultraviolet photodissociation (213 nm UVPD) is illustrated for the characterization of α-synuclein positional glycoforms: T72, T75, T81, and S87 modified with a single O-GlcNAc. Top-down 213 nm UVPD and ECD MS/MS experiments of the intact proteoforms showed specific product ions for each α-synuclein glycoforms associated with the O-GlcNAc position with a sequence coverage of ∼68 and ∼82%, respectively. TIMS-MS profiles of α-synuclein and the four glycoforms exhibited large structural heterogeneity and signature patterns across the 8+-15+ charge state distribution; however, while the α-synuclein positional glycoforms showed signature mobility profiles, they were only partially separated in the mobility domain. Moreover, a middle-down approach based on the Val40-Phe94 (55 residues) chymotrypsin proteolytic product using tandem TIMS-q-ECD-TOF MS/MS permitted the separation of the parent positional isomeric glycoforms. The ECD fragmentation of the ion mobility and m/z separated isomeric Val40-Phe94 proteolytic peptides with single O-GlcNAc in the T72, T75, T81, and S87 positions provided the O-GlcNAc confirmation and positional assignment with a sequence coverage of ∼80%. This method enables the high-throughput screening of positional glycoforms and further enhances the structural mass spectrometry toolbox with fast, high-resolution mobility separations and 213 nm UVPD and ECD fragmentation capabilities.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Espectrometría de Masas en Tándem/métodos , Enfermedad de Parkinson/metabolismo , Péptidos/metabolismo , Proteolisis , Péptido Hidrolasas/metabolismo
2.
Anal Chem ; 94(9): 3888-3896, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35188751

RESUMEN

Tandem mass spectrometry of denatured, multiply charged high mass protein precursor ions yield extremely dense spectra with hundreds of broad and overlapping product ion isotopic distributions of differing charge states that yield an elevated baseline of unresolved "noise" centered about the precursor ion. Development of mass analyzers and signal processing methods to increase mass resolving power and manipulation of precursor and product ion charge through solution additives or ion-ion reactions have been thoroughly explored as solutions to spectral congestion. Here, we demonstrate the utility of electron capture dissociation (ECD) coupled with high-resolution cyclic ion mobility spectrometry (cIMS) to greatly increase top-down protein characterization capabilities. Congestion of protein ECD spectra was reduced using cIMS of the ECD product ions and "mobility fractions", that is, extracted mass spectra for segments of the 2D mobiligram (m/z versus drift time). For small proteins, such as ubiquitin (8.6 kDa), where mass resolving power was not the limiting factor for characterization, pre-IMS ECD and mobility fractions did not significantly increase protein sequence coverage, but an increase in the number of identified product ions was observed. However, a dramatic increase in performance, measured by protein sequence coverage, was observed for larger and more highly charged species, such as the +35 charge state of carbonic anhydrase (29 kDa). Pre-IMS ECD combined with mobility fractions yielded a 135% increase in the number of annotated isotope clusters and a 75% increase in unique product ions compared to processing without using the IMS dimension. These results yielded 89% sequence coverage for carbonic anhydrase.


Asunto(s)
Electrones , Espectrometría de Movilidad Iónica , Secuencia de Aminoácidos , Proteínas/análisis , Espectrometría de Masas en Tándem/métodos
3.
Anal Chem ; 94(44): 15377-15385, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36282112

RESUMEN

Post-translational modifications (PTMs) on intact histones play a major role in regulating chromatin dynamics and influence biological processes such as DNA transcription, replication, and repair. The nature and position of each histone PTM is crucial to decipher how this information is translated into biological response. In the present work, the potential of a novel tandem top-"double-down" approach─ultraviolet photodissociation followed by mobility and mass-selected electron capture dissociation and mass spectrometry (UVPD-TIMS-q-ECD-ToF MS/MS)─is illustrated for the characterization of HeLa derived intact histone H4 proteoforms. The comparison between q-ECD-ToF MS/MS spectra and traditional Fourier-transform-ion cyclotron resonance-ECD MS/MS spectra of a H4 standard showed a similar sequence coverage (∼75%) with significant faster data acquisition in the ToF MS/MS platform (∼3 vs ∼15 min). Multiple mass shifts (e.g., 14 and 42 Da) were observed for the HeLa derived H4 proteoforms for which the top-down UVPD and ECD fragmentation analysis were consistent in detecting the presence of acetylated PTMs at the N-terminus and Lys5, Lys8, Lys12, and Lys16 residues, as well as methylated, dimethylated, and trimethylated PTMs at the Lys20 residue with a high sequence coverage (∼90%). The presented top-down results are in good agreement with bottom-up TIMS ToF MS/MS experiments and allowed for additional description of PTMs at the N-terminus. The integration of a 213 nm UV laser in the present platform allowed for UVPD events prior to the ion mobility-mass precursor separation for collision-induced dissociation (CID)/ECD-ToF MS. Selected c305+ UVPD fragments, from different H4 proteoforms (e.g., Ac + Me2, 2Ac + Me2 and 3Ac + Me2), exhibited multiple IMS bands for which similar CID/ECD fragmentation patterns per IMS band pointed toward the presence of conformers, adopting the same PTM distribution, with a clear assignment of the PTM localization for each of the c305+ UVPD fragment H4 proteoforms. These results were consistent with the biological "zip" model, where acetylation proceeds in the Lys16 to Lys5 direction. This novel platform further enhances the structural toolbox with alternative fragmentation mechanisms (UVPD, CID, and ECD) in tandem with fast, high-resolution mobility separations and shows great promise for global proteoform analysis.


Asunto(s)
Histonas , Espectrometría de Masas en Tándem , Humanos , Histonas/química , Espectrometría de Masas en Tándem/métodos , Electrones , Procesamiento Proteico-Postraduccional , Análisis de Fourier
4.
Anal Chem ; 93(27): 9575-9582, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34170114

RESUMEN

Comprehensive characterization of post-translationally modified histone proteoforms is challenging due to their high isobaric and isomeric content. Trapped ion mobility spectrometry (TIMS), implemented on a quadrupole/time-of-flight (Q-ToF) mass spectrometer, has shown great promise in discriminating isomeric complete histone tails. The absence of electron activated dissociation (ExD) in the current platform prevents the comprehensive characterization of unknown histone proteoforms. In the present work, we report for the first time the use of an electromagnetostatic (EMS) cell devised for nonergodic dissociation based on electron capture dissociation (ECD), implemented within a nESI-TIMS-Q-ToF mass spectrometer for the characterization of acetylated (AcK18 and AcK27) and trimethylated (TriMetK4, TriMetK9 and TriMetK27) complete histone tails. The integration of the EMS cell in a TIMS-q-TOF MS permitted fast mobility-selected top-down ECD fragmentation with near 10% efficiency overall. The potential of this coupling was illustrated using isobaric (AcK18/TriMetK4) and isomeric (AcK18/AcK27 and TriMetK4/TriMetK9) binary H3 histone tail mixtures, and the H3.1 TriMetK27 histone tail structural diversity (e.g., three IMS bands at z = 7+). The binary isobaric and isomeric mixtures can be separated in the mobility domain with RIMS > 100 and the nonergodic ECD fragmentation permitted the PTM localization (sequence coverage of ∼86%). Differences in the ECD patterns per mobility band of the z = 7+ H3 TriMetK27 molecular ions suggested that the charge location is responsible for the structural differences observed in the mobility domain. This coupling further enhances the structural toolbox with fast, high resolution mobility separations in tandem with nonergodic fragmentation for effective proteoform differentiation.


Asunto(s)
Electrones , Espectrometría de Movilidad Iónica , Diferenciación Celular , Iones , Espectrometría de Masas
5.
Anal Chem ; 92(5): 3674-3681, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-31999103

RESUMEN

Electron-based fragmentation methods have revolutionized biomolecular mass spectrometry, in particular native and top-down protein analysis. Here, we report the use of a new electromagnetostatic cell to perform electron capture dissociation (ECD) within a quadrupole/ion mobility/time-of-flight mass spectrometer. This cell was installed between the ion mobility and time-of-flight regions of the instrument, and fragmentation was fast enough to be compatible with mobility separation. The instrument was already fitted with electron transfer dissociation (ETD) between the quadrupole and mobility regions prior to modification. We show excellent fragmentation efficiency for denatured peptides and proteins without the need to trap ions in the gas phase. Additionally, we demonstrate native top-down backbone fragmentation of noncovalent protein complexes, leading to comparable sequence coverage to what was achieved using the instrument's existing ETD capabilities. Limited collisional ion activation of the hemoglobin tetramer before ECD was reflected in the observed fragmentation pattern, and complementary ion mobility measurements prior to ECD provided orthogonal evidence of monomer unfolding within this complex. The approach demonstrated here provides a powerful platform for both top-down proteomics and mass spectrometry-based structural biology studies.


Asunto(s)
Espectrometría de Masas/métodos , Desnaturalización Proteica , Proteínas/química , Secuencia de Aminoácidos , Animales , Bovinos , Humanos , Modelos Moleculares , Multimerización de Proteína , Estructura Cuaternaria de Proteína
6.
Anal Chem ; 92(1): 766-773, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31769659

RESUMEN

One challenge associated with the discovery and development of monoclonal antibody (mAb) therapeutics is the determination of heavy chain and light chain pairing. Advances in MS instrumentation and MS/MS methods have greatly enhanced capabilities for the analysis of large intact proteins yielding much more detailed and accurate proteoform characterization. Consequently, direct interrogation of intact antibodies or F(ab')2 and Fab fragments has the potential to significantly streamline therapeutic mAb discovery processes. Here, we demonstrate for the first time the ability to efficiently cleave disulfide bonds linking heavy and light chains of mAbs using electron capture dissociation (ECD) and 157 nm ultraviolet photodissociation (UVPD). The combination of intact mAb, Fab, or F(ab')2 mass, intact LC and Fd masses, and CDR3 sequence coverage enabled determination of heavy chain and light chain pairing from a single experiment and experimental condition. These results demonstrate the potential of top-down and middle-down proteomics to significantly streamline therapeutic antibody discovery.


Asunto(s)
Anticuerpos Monoclonales/química , Secuencia de Aminoácidos , Antineoplásicos Inmunológicos/química , Fragmentos Fab de Inmunoglobulinas/análisis , Cadenas Pesadas de Inmunoglobulina/análisis , Cadenas Ligeras de Inmunoglobulina/análisis , Espectrometría de Masas , Fotólisis , Trastuzumab/química , Rayos Ultravioleta
7.
J Proteome Res ; 17(2): 926-933, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29249155

RESUMEN

As the application of mass spectrometry intensifies in scope and diversity, the need for advanced instrumentation addressing a wide variety of analytical needs also increases. To this end, many modern, top-end mass spectrometers are designed or modified to include a wider range of fragmentation technologies, for example, ECD, ETD, EThcD, and UVPD. Still, the majority of instrument platforms are limited to more conventional methods, such as CID and HCD. While these latter methods have performed well, the less conventional fragmentation methods have been shown to lead to increased information in many applications including middle-down proteomics, top-down proteomics, glycoproteomics, and disulfide bond mapping. We describe the modification of the popular Q Exactive Orbitrap mass spectrometer to extend its fragmentation capabilities to include ECD. We show that this modification allows ≥85% matched ion intensity to originate from ECD fragment ion types as well as provides high sequence coverage (≥60%) of intact proteins and high fragment identification rates with ∼70% of ion signals matched. Finally, the ECD implementation promotes selective disulfide bond dissociation, facilitating the identification of disulfide-linked peptide conjugates. Collectively, this modification extends the capabilities of the Q Exactive Orbitrap mass spectrometer to a range of new applications.


Asunto(s)
Electrones , Fragmentos de Péptidos/análisis , Procesamiento Proteico-Postraduccional , Proteómica/instrumentación , Espectrometría de Masas en Tándem/instrumentación , Secuencia de Aminoácidos , Disulfuros/química , Diseño de Equipo , Humanos , Iones , Mioglobina/análisis , Mioglobina/química , Fragmentos de Péptidos/química , Proteolisis , Proteómica/métodos , Sustancia P/análisis , Sustancia P/química , Espectrometría de Masas en Tándem/métodos , Ubiquitina/análisis , Ubiquitina/química
8.
Anal Chem ; 90(18): 10819-10827, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30118589

RESUMEN

Compared to traditional collision induced dissociation methods, electron capture dissociation (ECD) provides more comprehensive characterization of large peptides and proteins as well as preserves labile post-translational modifications. However, ECD experiments are generally restricted to the high magnetic fields of FTICR-MS that enable the reaction of large polycations and electrons. Here, we demonstrate the use of an electromagnetostatic ECD cell to perform ECD and hybrid ECD methods utilizing 193 nm photons (ECuvPD) or collisional activation (EChcD) in a benchtop quadrupole-Orbitrap mass spectrometer. The electromagnetostatic ECD cell was designed to replace the transfer octapole between the quadrupole and C-trap. This implementation enabled facile installation of the ECD cell, and ions could be independently subjected to ECD, UVPD, HCD, or any combination. Initial benchmarking and characterization of fragmentation propensities for ECD, ECuvPD, and EChcD were performed using ubiquitin (8.6 kDa). ECD yielded extensive sequence coverage for low charge states of ubiquitin as well as for the larger protein carbonic anhydrase II (29 kDa), indicating pseudo-activated ion conditions. Additionally, relatively high numbers of d- and w-ions enable differentiation of isobaric isoleucine and leucine residues and suggest a distribution of electron energies yield hot-ECD type fragmentation. We report the most comprehensive characterization to date for model proteins up to 29 kDa and a monoclonal antibody at the subunit level. ECD, ECuvPD, and EChcD yielded 93, 95, and 91% sequence coverage, respectively, for carbonic anhydrase II (29 kDa), and targeted online analyses of monoclonal antibody subunits yielded 86% overall antibody sequence coverage.


Asunto(s)
Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Anticuerpos Monoclonales/química , Anhidrasa Carbónica II/química , Cromatografía Liquida/métodos , Procesamiento Proteico-Postraduccional , Espectrometría de Masas en Tándem/instrumentación , Ubiquitina/química
9.
J Am Soc Mass Spectrom ; 32(8): 2081-2091, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-33914527

RESUMEN

Electron-based dissociation (ExD) produces uncluttered mass spectra of intact proteins while preserving labile post-translational modifications. However, technical challenges have limited this option to only a few high-end mass spectrometers. We have developed an efficient ExD cell that can be retrofitted in less than an hour into current LC/Q-TOF instruments. Supporting software has been developed to acquire, process, and annotate peptide and protein ExD fragmentation spectra. In addition to producing complementary fragmentation, ExD spectra enable many isobaric leucine/isoleucine and isoaspartate/aspartate pairs to be distinguished by side-chain fragmentation. The ExD cell preserves phosphorylation and glycosylation modifications. It also fragments longer peptides more efficiently to reveal signaling cross-talk between multiple post-translational modifications on the same protein chain and cleaves disulfide bonds in cystine knotted proteins and intact antibodies. The ability of the ExD cell to combine collisional activation with electron fragmentation enables more complete sequence coverage by disrupting intramolecular electrostatic interactions that can hold fragments of large peptides and proteins together. These enhanced capabilities made possible by the ExD cell expand the size of peptides and proteins that can be analyzed as well as the analytical certainty of characterizing their post-translational modifications.


Asunto(s)
Espectrometría de Masas/instrumentación , Proteínas/análisis , Proteínas/metabolismo , Disulfuros/química , Electrones , Glicosilación , Insulina/análisis , Insulina/química , Ácido Isoaspártico/química , Leucina/química , Lisina/química , Espectrometría de Masas/métodos , Fosfopéptidos/análisis , Fosfopéptidos/química , Fosforilación , Prolina/química , Procesamiento Proteico-Postraduccional , Proteínas/química , Programas Informáticos , Sustancia P/análisis , Sustancia P/química , Sustancia P/metabolismo
10.
Anal Chem ; 81(3): 1238-43, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19117494

RESUMEN

A radio frequency-free (RFF), analyzer-independent cell has been devised for electron-capture dissociation (ECD) of ions. The device is based on interleaving a series of electrostatic lenses with the periodic structure of magnetostatic lenses commonly found in a traveling wave tube. The RFF electrostatic/magnetostatic ECD cell was installed in a Finnigan TSQ700 ESI triple quadrupole (QqQ) spectrometer, and its performance was evaluated by recording product-ion spectra of doubly protonated substance P, doubly protonated gramicidin S, doubly protonated neurotensin, and triply protonated neurotensin. These spectra were readily obtained without recourse to a buffering gas or synchronizing electron injection with a specific phase of an RF field. The mass spectra produced with the modified instrument appear in all respects (other than resolution and mass accuracy, which were limited by the mass spectrometer used) to be at least as good for purposes of peptide identification as those recorded with Fourier transform ion cyclotron resonance (FT ICR) instruments; however, the effort and time to produce the mass spectra were much less than required to produce their FT ICR counterparts. The cell's design and compact construction should allow it to be incorporated at relatively little cost into virtually any type of tandem mass spectrometer, for example, triple quadrupole, hybrid quadrupole ion trap, hybrid quadrupole time-of-flight, or even FT-ICR.


Asunto(s)
Péptidos/química , Espectrometría de Masas en Tándem/métodos , Análisis de Fourier
11.
J Am Soc Mass Spectrom ; 26(5): 752-61, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25652934

RESUMEN

Dissociation of peptides induced by interaction with (free) electrons (electron-induced dissociation, EID) at electron energies ranging from near 0 to >30 eV was carried out using a radio-frequency-free electromagnetostatic (EMS) cell retrofitted into a triple quadrupole mass spectrometer. The product-ion mass spectra exhibited EID originating from electronically excited even-electron precursor ions, reduced radical cations formed by capture of low-energy electrons, and oxidized radical cations produced by interaction with high-energy electrons. The spectra demonstrate, within the limits of the triple quadrupole's resolving power, that high-energy EID product-ion spectra produced with an EMS cell exhibit essentially the same qualitative structural information, i.e., amino acid side-chain (SC) losses and backbone cleavages, as observed in high-energy EID spectra produced with a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer. The levels of fragmentation efficiency evident in the product-ion spectra recorded in this study, as was the case for those recorded in earlier studies with FT ICR mass spectrometers, is currently at the margin of analytical utility. Given that this shortcoming can be remedied, EMS cells incorporated into QqQ or QqTOF mass spectrometers could make tandem high-energy EID mass spectrometry more widely accessible for analysis of peptides, small singly charged molecules, pharmaceuticals, and clinical samples.


Asunto(s)
Oligopéptidos/química , Fragmentos de Péptidos/análisis , Péptidos/química , Secuencia de Aminoácidos , Animales , Ciclotrones , Técnicas Electroquímicas , Campos Electromagnéticos , Análisis de Fourier , Humanos , Espectrometría de Masas/instrumentación , Fragmentos de Péptidos/química , Estabilidad Proteica , Proteolisis , Espectrometría de Masa por Ionización de Electrospray/instrumentación , Sustancia P/química
12.
J Am Soc Mass Spectrom ; 26(12): 2096-104, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26266643

RESUMEN

Electron capture dissociation (ECD), which generally preserves the position of labile post-translational modifications, can be a powerful method for de novo sequencing of proteins and peptides. In this report, ECD product-ion mass spectra of singly and doubly sodiated, nonphosphorylated, and phosphorylated peptides are presented and compared with the ECD mass spectra of their protonated counterparts. ECD of doubly charged, singly sodiated peptides yielded essentially the same sequence information as was produced by the corresponding doubly protonated peptides. The presence of several sodium binding sites on the polypeptide backbone, however, resulted in more complicated spectra. This situation is aggravated by the zwitterionic equilibrium of the free acid peptide precursors. The product-ion spectra of doubly and triply charged peptides possessing two sodium ions were further complicated by the existence of isomers created by the differential distribution of sodium binding sites. Triply charged, phosphorylated precursors containing one sodium, wherein the sodium is attached exclusively to the PO4 group, were found to be as useful for sequence analysis as the fully protonated species. Although sodium adducts are generally minimized during sample preparation, it appears that they can nonetheless provide useful sequence information. Additionally, they enable straightforward identification of a peptide's charge state, even on low-resolution instruments. The experiments were carried out using a radio frequency-free electromagnetostatic cell retrofitted into the collision-induced dissociation (CID) section of a hybrid quadrupole/time-of-flight tandem mass spectrometer. Graphical Abstract ᅟ.


Asunto(s)
Péptidos/química , Sodio/química , Secuencia de Aminoácidos , Electrones , Diseño de Equipo , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Modelos Moleculares
13.
J Mass Spectrom ; 37(3): 313-21, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11921373

RESUMEN

The structures of [M-H](-) ions generated from free fatty acids in resonant electron capture at energies of 1.2 and 7.2 eV were investigated using deuterium-labeled isotopomers and collision-induced dissociation. The [M-H](- small middle dot) ions occur in both a carboxylate anion and a carbanion form. While the formation of the carboxylate anion at 1.2 eV involves the loss of a carboxylic hydrogen, that at 7.2 eV involves the loss of a hydrogen from different positions in the aliphatic chain followed by a rearrangement of a carboxylic hydrogen on to the radical site in the chain. The [M-H-H(2)O](-) ion which is a minor ion in the resonant electron capture spectrum at 7.2 eV is shown to be a precursor for the charge-remote fragment ions corresponding to formal losses of a hydrogen and elements of alkanes. The [M-H-H(2)O](-) ion corresponding to the second major ion in the resonant electron capture spectrum at 7.2 eV is demonstrated to be consistent with a cyclopentanone anion structure. On the basis of new insights obtained in the present study and taking into account previous results, an updated proposal is presented for the mechanism of charge-remote fragmentation which operates in resonant electron capture of free fatty acids at 7.2 eV.


Asunto(s)
Ácidos Grasos no Esterificados/análisis , Deuterio , Marcaje Isotópico , Espectrometría de Masas , Espectrometría de Masa Bombardeada por Átomos Veloces
15.
Mar Biotechnol (NY) ; 4(2): 179-88, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14961278

RESUMEN

A marine bacterium (KMM 1364), identified as Bacillus pumilus, was isolated from the surface of ascidian Halocynthia aurantium. Structural analysis revealed that the strain KMM 1364 produced a mixture of lipopeptide surfactin analogs with major components with molecular masses of 1035, 1049, 1063, and 1077. The variation in molecular weight represents changes in the number of methylene groups in the lipid and/or peptide portions of the compounds. Structurally, these lipopeptides differ from surfactin in the substitution of the valine residue in position 4 by leucine, and have been isolated as two carboxy-terminal variants, with valine or isoleucine in position 7. As constituents of the lipophilic part of the peptides, only beta-hydroxy-C(15)-, beta-hydroxy-C(16)-, and a high amount of beta-hydroxy-C(17) fatty acid were determined.

16.
J Am Soc Mass Spectrom ; 25(10): 1730-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25037842

RESUMEN

A radio frequency-free electromagnetostatic (EMS) cell devised for electron-capture dissociation (ECD) of ions has been retrofitted into the collision-induced dissociation (CID) section of a triple quadrupole mass spectrometer to enable recording of ECD product-ion mass spectra and simultaneous recording of ECD-CID product-ion mass spectra. This modified instrument can be used to produce easily interpretable ECD and ECD-CID product-ion mass spectra of tyrosine-phosphorylated peptides that cover over 50% of their respective amino-acid sequences and readily identify their respective sites of phosphorylation. ECD fragmentation of doubly protonated, tyrosine-phosphorylated peptides, which was difficult to observe with FT-ICR instruments, occurs efficiently in the EMS cell.


Asunto(s)
Péptidos/química , Espectrometría de Masas en Tándem/instrumentación , Espectrometría de Masas en Tándem/métodos , Tirosina/química , Secuencia de Aminoácidos , Campos Electromagnéticos , Fosforilación
17.
J Am Soc Mass Spectrom ; 22(4): 607-11, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21472599

RESUMEN

Recently, we demonstrated that a radio-frequency-free electromagnetostatic (rf-free EMS) cell could be retrofitted into a triple quad mass spectrometer to allow electron-capture dissociation (ECD) without the aid of cooling gas or phase-specific electron injection into the cell (Voinov et al., Rapid Commun Mass Spectrom 22, 3087-3088, 2008; Voinov et al., Anal Chem 81, 1238-1243, 2009). Subsequently, we used our rf-free EMS cell in the same instrument platform to demonstrate ECD occurring in the same space and at the same time with collision-induced dissociation (CID) to produce golden pairs and even triplets from peptides (Voinov et al., Rapid Commun Mass Spectrom 23, 3028-3030, 2009). In this report, we demonstrate that ECD and CID product-ion mass spectra can be recorded at high resolution with flexible control of fragmentation processes using a newly designed cell installed in a hybrid Q-TOF tandem mass spectrometer.


Asunto(s)
Espectrometría de Masas en Tándem/métodos , Electrones , Oligopéptidos/química
18.
Anal Chem ; 79(7): 2822-6, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17335179

RESUMEN

Classical charge-remote fragmentation (CRF) of a series of long-chain saturated and monounsaturated fatty acid anions, a well-known phenomenon under collisional activation conditions, is observed for the first time during fast atom bombardment of the analyte-matrix mixture without collisional activation. The process is efficient enough to allow collision-induced dissociation and metastable ion decomposition MS/MS spectra of any charge-remote [M-H2-(CH2)n]- fragments as well as spectra of neutral losses to be recorded. The results obtained are in contradiction to the generally accepted theory that CRF results exclusively in terminally unsaturated carboxylate anions. The new results indicate that a multistep radical mechanism is involved in CRF ion formation. The first step of the process appears to be accompanied by hydrogen elimination that occurs randomly throughout the molecule. The primary fragment radical ions formed can decompose further with the formation of the next generation of CRF ions.


Asunto(s)
Ácidos Grasos/química , Espectrometría de Masa Bombardeada por Átomos Veloces/métodos , Radicales Libres/química , Iones/química , Sensibilidad y Especificidad
19.
Anal Chem ; 79(4): 1519-22, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17243767

RESUMEN

Fast-atom bombardment (FAB) mass spectrometry in the negative ion mode can be used to unambiguously distinguish between cis and trans isomers of monounsaturated fatty acids by the relative signal strengths of an intense pair of ion signals. Under normal FAB ionization/desorption conditions, the deprotonated molecules (i.e., [M - H]-) of six fatty acids underwent charge remote fragmentation. A characteristic fragmentation pattern of two intense peak clusters of peaks with three weak intervening clusters of peaks are used in each case to identify the position of the double bond. The possibility of resonance electron capture occurring during the FAB process is discussed.


Asunto(s)
Ácidos Grasos Monoinsaturados/análisis , Espectrometría de Masa Bombardeada por Átomos Veloces/métodos , Sensibilidad y Especificidad , Estereoisomerismo
20.
J Am Chem Soc ; 128(16): 5506-15, 2006 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-16620124

RESUMEN

Resonant electron capture mass spectra of aliphatic and aromatic amino acids and their methyl esters show intense [M-H](-) negative ions in the low-energy range. Ion formation results from a predissociation mechanism mediated by the low-energy pi*oo resonant state. Methylation in general has little influence on the electronic structure according to quantum chemical calculations, but the corresponding ions from the methyl esters, [M-Me](-), could be ascertained to arise only at higher resonance energies. Aromatic amino acids are characterized by an additional low-energy fragmentation channel associated with the generation of negative ions with loss of the side chain. The complementary negative ions of the side chains are more efficiently produced at higher energies. The results have significant implications in biological systems as they suggest that amino acids can serve as radiation protectors since they have been found to efficiently thermalize electrons.


Asunto(s)
Aminoácidos/química , Ésteres/química , Amoníaco/química , Electrones , Hidrógeno/química , Oxígeno/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA