Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cytotherapy ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39373674

RESUMEN

BACKGROUND AIMS: Meniscus injury is highly debilitating and often results in osteoarthritis. Treatment is generally symptomatic; no regenerative treatments are available. "Chondrons," articular chondrocytes with preserved pericellular matrix, produce more hyaline cartilage extracellular matrix and improve cartilage repair. If meniscons exist in the meniscus and have similar therapeutic potential as chondrons, employing these cells has potential for meniscus cell therapy and tissue engineering. In this study, we isolated and cultured "meniscons," meniscus cells surrounded by their native pericellular matrix, and investigated cell behavior in culture compared with chondrons. METHODS: Human meniscons were enzymatically isolated from osteoarthritic menisci and cultured up to 28 days in fibrin glue. Freshly isolated meniscons and chondrons were analyzed by histology and transmission electron microscopy. We used 5-([4,6-dichlorotriazin-2-yl]amino)fluorescein hydrochloride labeling and type VI collagen immunohistochemistry to image pericellular matrix after 0 and 28 days of culture. Gene expression was quantified using real-time polymerase chain reaction and DNA content and proteoglycan production were analyzed using biochemical assays. RESULTS: Meniscons were successfully isolated from human meniscus tissue. The pericellular matrix of meniscons and chondrons was preserved during 28 days of culture. Meniscons and chondrons had similar cell proliferation and proteoglycan production. Meniscons and chondrons expressed similar levels of collagen type I alpha 1 chain, whereas collagen type II alpha 1 chain and aggrecan expression was lower in the meniscon population. CONCLUSIONS: Freshly isolated meniscons and meniscons cultured for 28 days share similarities with chondrons with regard to cell proliferation, morphology and biochemical activity. Rapid isolation of meniscons (45 min) demonstrates potential for one-stage meniscus regeneration and repair, which should be confirmed in vivo.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38961773

RESUMEN

PURPOSE: The aim of this consensus was to develop evidence- and expert-based patient-focused recommendations on the appropriateness of intra-articular platelet-rich plasma (PRP) injections in different clinical scenarios of patients with knee osteoarthritis (OA). METHODS: The RAND/UCLA Appropriateness Method was used by the European Society of Sports Traumatology, Knee Surgery, and Arthroscopy (ESSKA), as well as the International Cartilage Regeneration and Joint Preservation Society (ICRS) to reach a consensus and produce recommendations for specific patient categories combining best available scientific evidence with the collective judgement of a panel of experts. RESULTS: Scenarios were defined based on first treatment vs first injective treatment vs second injective treatment, age (<50/50-65/66-80/>80), tibiofemoral vs patellofemoral involvement, OA level (Kellgren-Lawrence/KL 0-I/II-III/IV), and joint effusion (dry knee, minor-mild or major effusion). Out of 216 scenarios, in 84 (38.9%) the indication was considered appropriate, in 9 (4.2%) inappropriate and in 123 (56.9%) uncertain. The parameters associated with the highest consensus were PRP use after failed injective treatments (62.5%), followed by PRP after failed conservative treatments and KL 0-III scenarios (58.3%), while the highest uncertainty was found for PRP use as first treatment and KL IV OA (91.7% and 87.5% of uncertain scenarios, respectively). CONCLUSION: This ESSKA-ICRS consensus established recommendations on the appropriateness or inappropriateness of PRP injections for the treatment of knee OA, providing a useful reference for clinical practice. PRP injections are considered appropriate in patients aged ≤80 years with knee KL 0-III OA grade after failed conservative non-injective or injective treatments, while they are not considered appropriate as first treatment nor in KL IV OA grade. LEVEL OF EVIDENCE: Level I.

3.
Adv Exp Med Biol ; 1420: 59-80, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258784

RESUMEN

Articular cartilage covers the ends of bones in synovial joints acting as a shock absorber that helps movement of bones. Damage of the articular cartilage needs treatment as it does not repair itself and the damage can progress to osteoarthritis. In osteoarthritis all the joint tissues are involved with characteristic progressive cartilage degradation and inflammation. Autologous chondrocyte implantation is a well-proven cell-based treatment for cartilage defects, but a main downside it that it requires two surgeries. Multipotent, aka mesenchymal stromal cell (MSC)-based cartilage repair has gained attention as it can be used as a one-step treatment. It is proposed that a combination of immunomodulatory and regenerative capacities make MSC attractive for the treatment of osteoarthritis. Furthermore, since part of the paracrine effects of MSCs are attributed to extracellular vesicles (EVs), small membrane enclosed particles secreted by cells, EVs are currently being widely investigated for their potential therapeutic effects. Although MSCs have entered clinical cartilage treatments and EVs are used in in vivo efficacy studies, not much attention has been given to determine their potency and to the development of potency assays. This chapter provides considerations and suggestions for the development of potency assays for the use of MSCs and MSC-EVs for the treatment of cartilage defects and osteoarthritis.


Asunto(s)
Enfermedades de los Cartílagos , Cartílago Articular , Vesículas Extracelulares , Células Madre Mesenquimatosas , Osteoartritis , Humanos , Osteoartritis/terapia , Osteoartritis/metabolismo , Cartílago Articular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Condrocitos/metabolismo
4.
Biomacromolecules ; 23(3): 1350-1365, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35195399

RESUMEN

Viscoelastic hydrogels are gaining interest as they possess necessary requirements for bioprinting and injectability. By means of reversible, dynamic covalent bonds, it is possible to achieve features that recapitulate the dynamic character of the extracellular matrix. Dually cross-linked and double-network (DN) hydrogels seem to be ideal for the design of novel biomaterials and bioinks, as a wide range of properties required for mimicking advanced and complex tissues can be achieved. In this study, we investigated the fabrication of chondroitin sulfate/hyaluronic acid (CS/HA)-based DN hydrogels, in which two networks are interpenetrated and cross-linked with the dynamic covalent bonds of very different lifetimes. Namely, Diels-Alder adducts (between methylfuran and maleimide) and hydrazone bonds (between aldehyde and hydrazide) were chosen as cross-links, leading to viscoelastic hydrogels. Furthermore, we show that viscoelasticity and the dynamic character of the resulting hydrogels could be tuned by changing the composition, that is, the ratio between the two types of cross-links. Also, due to a very dynamic nature and short lifetime of hydrazone cross-links (∼800 s), the DN hydrogel is easily processable (e.g., injectable) in the first stages of gelation, allowing the material to be used in extrusion-based 3D printing. The more long-lasting and robust Diels-Alder cross-links are responsible for giving the network enhanced mechanical strength and structural stability. Being highly charged and hydrophilic, the cross-linked CS and HA enable a high swelling capacity (maximum swelling ratio ranging from 6 to 12), which upon confinement results in osmotically stiffened constructs, able to mimic the mechanical properties of cartilage tissue, with the equilibrium moduli ranging from 0.3 to 0.5 MPa. Moreover, the mesenchymal stromal cells were viable in the presence of the hydrogels, and the effect of the degradation products on the macrophages suggests their safe use for further translational applications. The DN hydrogels with dynamic covalent cross-links hold great potential for the development of novel smart and tunable viscoelastic materials to be used as biomaterial inks or bioinks in bioprinting and regenerative medicine.


Asunto(s)
Bioimpresión , Hidrogeles , Materiales Biocompatibles , Sulfatos de Condroitina/química , Ácido Hialurónico/química , Hidrazonas , Hidrogeles/química , Ingeniería de Tejidos
5.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34281202

RESUMEN

Autologous chondrocyte implantation (ACI) is a cell therapy for the treatment of focal cartilage defects. The ACI product that is currently approved for use in the European Union (EU) consists of spheroids of autologous matrix-associated chondrocytes. These spheroids are spherical aggregates of ex vivo expanded human autologous chondrocytes and their self-synthesized extracellular matrix. The aim is to provide an overview of the preclinical and nonclinical studies that have been performed to ensure reproducible quality, safety, and efficacy of the cell therapy, and to evaluate the clinical data on ACI with spheroids. A systematic review was performed to include all English publications on self-aggregated spheroids of chondrocytes cultured in autologous serum without other supplements. A total of 20 publications were included, 7 pre- and nonclinical and 13 clinical research publications. The pre- and nonclinical research publications describe the development from concept to in vivo efficacy and quality- and safety-related aspects such as biodistribution, tumorigenicity, genetic stability, and potency. The evaluation of clinical research shows short- to mid-term safety and efficacy for the ACI with spheroid-based treatment of cartilage defects in both randomized clinical trials with selected patients, as well as in routine treatment providing real-world data in more complex patients.


Asunto(s)
Condrocitos/trasplante , Animales , Enfermedades de los Cartílagos/cirugía , Enfermedades de los Cartílagos/terapia , Cartílago Articular/cirugía , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Condrocitos/citología , Condrocitos/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Humanos , Traumatismos de la Rodilla/cirugía , Traumatismos de la Rodilla/terapia , Articulación de la Rodilla/metabolismo , Articulación de la Rodilla/patología , Procedimientos Ortopédicos/métodos , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , Osteoartritis de la Rodilla/terapia , Esferoides Celulares , Trasplante Autólogo
6.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34445320

RESUMEN

Meniscus injuries can be highly debilitating and lead to knee osteoarthritis. Progenitor cells from the meniscus could be a superior cell type for meniscus repair and tissue-engineering. The purpose of this study is to characterize meniscus progenitor cells isolated by differential adhesion to fibronectin (FN-prog). Human osteoarthritic menisci were digested, and FN-prog were selected by differential adhesion to fibronectin. Multilineage differentiation, population doubling time, colony formation, and MSC surface markers were assessed in the FN-prog and the total meniscus population (Men). Colony formation was compared between outer and inner zone meniscus digest. Chondrogenic pellet cultures were performed for redifferentiation. FN-prog demonstrated multipotency. The outer zone FN-prog formed more colonies than the inner zone FN-prog. FN-prog displayed more colony formation and a higher proliferation rate than Men. FN-prog redifferentiated in pellet culture and mostly adhered to the MSC surface marker profile, except for HLA-DR receptor expression. This is the first study that demonstrates differential adhesion to fibronectin for the isolation of a progenitor-like population from the meniscus. The high proliferation rates and ability to form meniscus extracellular matrix upon redifferentiation, together with the broad availability of osteoarthritis meniscus tissue, make FN-prog a promising cell type for clinical translation in meniscus tissue-engineering.


Asunto(s)
Adhesión Celular , Fibronectinas/metabolismo , Menisco/citología , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos/métodos , Anciano , Anciano de 80 o más Años , Células Cultivadas , Condrocitos/citología , Condrocitos/metabolismo , Condrocitos/fisiología , Condrogénesis , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Persona de Mediana Edad , Andamios del Tejido/química
7.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681860

RESUMEN

Meniscus injury and meniscectomy are strongly related to osteoarthritis, thus there is a clinical need for meniscus replacement. The purpose of this study is to create a meniscus scaffold with micro-scale circumferential and radial fibres suitable for a one-stage cell-based treatment. Poly-caprolactone-based scaffolds with three different architectures were made using melt electrowriting (MEW) technology and their in vitro performance was compared with scaffolds made using fused-deposition modelling (FDM) and with the clinically used Collagen Meniscus Implants® (CMI®). The scaffolds were seeded with meniscus and mesenchymal stromal cells (MSCs) in fibrin gel and cultured for 28 d. A basal level of proteoglycan production was demonstrated in MEW scaffolds, the CMI®, and fibrin gel control, yet within the FDM scaffolds less proteoglycan production was observed. Compressive properties were assessed under uniaxial confined compression after 1 and 28 d of culture. The MEW scaffolds showed a higher Young's modulus when compared to the CMI® scaffolds and a higher yield point compared to FDM scaffolds. This study demonstrates the feasibility of creating a wedge-shaped meniscus scaffold with MEW using medical-grade materials and seeding the scaffold with a clinically-feasible cell number and -type for potential translation as a one-stage treatment.


Asunto(s)
Menisco/citología , Células Madre Mesenquimatosas , Andamios del Tejido/química , Adulto , Anciano , Anciano de 80 o más Años , Células Cultivadas , Módulo de Elasticidad , Matriz Extracelular/química , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteoglicanos/metabolismo
8.
Acta Orthop ; 91(6): 743-749, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32698659

RESUMEN

Background and purpose - Platelet-rich plasma (PRP) is broadly used in the treatment of knee osteoarthritis, but clinical outcomes are highly variable. We evaluated the effectiveness of intra-articular injections with Autologous Conditioned Plasma (ACP), a commercially available form of platelet-rich plasma, in a tertiary referral center. Second, we aimed to identify which patient factors are associated with clinical outcome. Patients and methods - 140 patients (158 knees) with knee osteoarthritis (Kellgren and Lawrence grade 0-4) were treated with 3 intra-articular injections of ACP. The Knee Injury and Osteoarthritis Outcome Score (KOOS), pain (Numeric Rating Scale; NRS), and general health (EuroQol 5 Dimensions; EQ5D) were assessed at baseline and 3, 6, and 12 months' follow-up. The effect of sex, age, BMI, Kellgren and Lawrence grade, history of knee trauma, and baseline KOOS on clinical outcome at 6 and 12 months was determined using linear regression. Results - Mean KOOS increased from 37 at baseline to 44 at 3 months, 45 at 6 months, and 43 at 12 months' follow-up. Mean NRS-pain decreased from 6.2 at baseline to 5.3 at 3 months, 5.2 at 6 months, and 5.3 at 12 months. EQ5D did not change significantly. There were no predictors of clinical outcome. Interpretation - ACP does not lead to a clinically relevant improvement (exceeding the minimal clinically important difference) in patients suffering from knee osteoarthritis. None of the investigated factors predicts clinical outcome.


Asunto(s)
Artralgia , Inyecciones Intraarticulares , Osteoartritis de la Rodilla , Plasma Rico en Plaquetas , Factores de Edad , Artralgia/diagnóstico , Artralgia/etiología , Índice de Masa Corporal , Femenino , Estudios de Seguimiento , Humanos , Inyecciones Intraarticulares/métodos , Inyecciones Intraarticulares/estadística & datos numéricos , Masculino , Anamnesis/estadística & datos numéricos , Persona de Mediana Edad , Países Bajos/epidemiología , Osteoartritis de la Rodilla/epidemiología , Osteoartritis de la Rodilla/fisiopatología , Osteoartritis de la Rodilla/terapia , Pronóstico , Medición de Riesgo/métodos , Factores Sexuales , Resultado del Tratamiento
9.
Aesthet Surg J ; 40(4): NP194-NP201, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-31402379

RESUMEN

BACKGROUND: Adipose tissue has been widely used in regenerative surgery for its therapeutic potential. This potential is often ascribed to the stromal vascular fraction (SVF), which can be mechanically isolated. Mechanical isolation results in an SVF that retains intact cell-cell communication including extracellular matrix and is therefore named tissue-SVF (tSVF). OBJECTIVES: The aim of this study was to evaluate a new disposable 1-hole fractionator for fractionation of adipose tissue (FAT), and compare this new device with the existing reusable 3-hole fractionator. METHODS: The composition of tSVF obtained via the 1-hole fractionator was histologically and histochemically compared to unprocessed adipose tissue. The number of viable nuclear cells in tSVF obtained by the 1-hole and 3-hole fractionators as well as unprocessed adipose tissue were compared after enzymatic isolation and tested for colony-forming capacity. Flow cytometry was used to compare different cell compositions based on surface marker expression between tSVF isolated by the two types of fractionators. RESULTS: Fractionation of adipose tissue with the 1-hole fractionator condenses vasculature and extracellular matrix by disrupting adipocytes. The number of viable nuclear cells in tSVF obtained with the two fractionators was comparable and significantly higher than unprocessed lipoaspirate. Furthermore, tSVF isolated by both fractionators showed similar cell compositions and comparable colony-forming capacities. CONCLUSIONS: FAT with a disposable 1-hole fractionator effectively isolates tSVF with a cell count and cell composition comparable to the fraction obtained with the 3-hole reusable fractionator. The disposable 1-hole fractionator, however, is safer and more user friendly.


Asunto(s)
Adipocitos , Tejido Adiposo , Recuento de Células , Diferenciación Celular , Matriz Extracelular , Citometría de Flujo , Humanos , Células del Estroma
10.
Stem Cells ; 35(8): 1984-1993, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28600828

RESUMEN

MSCs are known as multipotent mesenchymal stem cells that have been found capable of differentiating into various lineages including cartilage. However, recent studies suggest MSCs are pericytes that stimulate tissue repair through trophic signaling. Aimed at articular cartilage repair in a one-stage cell transplantation, this study provides first clinical evidence that MSCs stimulate autologous cartilage repair in the knee without engrafting in the host tissue. A phase I (first-in-man) clinical trial studied the one-stage application of allogeneic MSCs mixed with 10% or 20% recycled defect derived autologous chondrons for the treatment of cartilage defects in 35 patients. No treatment-related serious adverse events were found and statistically significant improvement in clinical outcome shown. Magnetic resonance imaging and second-look arthroscopies showed consistent newly formed cartilage tissue. A biopsy taken from the center of the repair tissue was found to have hyaline-like features with a high concentration of proteoglycans and type II collagen. DNA short tandem repeat analysis delivered unique proof that the regenerated tissue contained patient-DNA only. These findings support the hypothesis that allogeneic MSCs stimulate a regenerative host response. This first-in-man trial supports a paradigm shift in which MSCs are applied as augmentations or "signaling cells" rather than differentiating stem cells and opens doors for other applications. Stem Cells 2017;35:1984-1993.


Asunto(s)
Cartílago Articular/patología , Condrocitos/trasplante , Trasplante de Células Madre Mesenquimatosas , Adulto , Artroscopía , Cartílago Articular/diagnóstico por imagen , Demografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Repeticiones de Microsatélite/genética , Trasplante Autólogo/efectos adversos , Resultado del Tratamiento
11.
Stem Cells ; 35(1): 256-264, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27507787

RESUMEN

Traditionally, mesenchymal stem cells (MSCs) isolated from adult bone marrow were described as being capable of differentiating to various lineages including cartilage. Despite increasing interest in these MSCs, concerns regarding their safety, in vivo behavior and clinical effectiveness have restrained their clinical application. We hypothesized that MSCs have trophic effects that stimulate recycled chondrons (chondrocytes with their native pericellular matrix) to regenerate cartilage. Searching for a proof of principle, this phase I (first-in-man) clinical trial applied allogeneic MSCs mixed with either 10% or 20% recycled autologous cartilage-derived cells (chondrons) for treatment of cartilage defects in the knee in symptomatic cartilage defect patients. This unique first in man series demonstrated no treatment-related adverse events up to one year postoperatively. At 12 months, all patients showed statistically significant improvement in clinical outcome compared to baseline. Magnetic resonance imaging and second-look arthroscopies showed completely filled defects with regenerative cartilage tissue. Histological analysis on biopsies of the grafts indicated hyaline-like regeneration with a high concentration of proteoglycans and type II collagen. Short tandem repeat analysis showed the regenerative tissue only contained patient-own DNA. These findings support the novel insight that the use of allogeneic MSCs is safe and opens opportunities for other applications. Stem cell-induced paracrine mechanisms may play an important role in the chondrogenesis and successful tissue regeneration found. Stem Cells 2017;35:256-264.


Asunto(s)
Cartílago Articular/patología , Cartílago Articular/fisiopatología , Condrocitos/citología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Regeneración , Adulto , Artroscopía , Cartílago Articular/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Repeticiones de Microsatélite/genética , Trasplante Autólogo , Resultado del Tratamiento
12.
Cell Biol Toxicol ; 33(4): 329-349, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28144824

RESUMEN

The repair of articular cartilage needs a sufficient number of chondrocytes to replace the defect tissue, and therefore, expansion of cells is generally required. Chondrocytes derived by cellular reprogramming may provide a solution to the limitations of current (stem) cell-based therapies. In this article, two distinct approaches-induced pluripotent stem cell (iPSC)-mediated reprogramming and direct lineage conversion-are analysed and compared according to criteria that encompass the qualification of the method and the derived chondrocytes for the purpose of clinical application. Progress in iPSC generation has provided insights into the replacement of reprogramming factors by small molecules and chemical compounds. As follows, multistage chondrogenic differentiation methods have shown to improve the chondrocyte yield and quality. Nevertheless, the iPSC 'detour' remains a time- and cost-consuming approach. Direct conversion of fibroblasts into chondrocytes provides a slight advantage over these aspects compared to the iPSC detour. However, the requirement of constitutive transgene expression to inhibit hypertrophic differentiation limits this approach of being translated to the clinic. It can be concluded that the quality of the derived chondrocytes highly depends on the characteristics of the reprogramming method and that this is important to keep in mind during the experimental set-up. Further research into both reprogramming approaches for clinical cartilage repair has to include proper control groups and epigenetic profiling to optimize the techniques and eventually derive functionally stable articular chondrocytes.


Asunto(s)
Cartílago/fisiología , Reprogramación Celular/fisiología , Condrocitos/fisiología , Cartílago/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Condrogénesis , Fibroblastos , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Trasplante de Células Madre
13.
Front Vet Sci ; 11: 1374681, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596460

RESUMEN

Osteoarthritis (OA) remains a major cause of lameness in horses, which leads to lost days of training and early retirement. Still, the underlying pathological processes are poorly understood. MicroRNAs (miRNAs) are small non-coding RNAs that serve as regulators of many biological processes including OA. Analysis of miRNA expression in diseased joint tissues such as cartilage and synovial membrane may help to elucidate OA pathology. Since integrin α10ß1-selected mesenchymal stem cell (integrin α10-MSC) have shown mitigating effect on equine OA we here investigated the effect of integrin α10-MSCs on miRNA expression. Cartilage and synovial membrane was harvested from the middle carpal joint of horses with experimentally induced, untreated OA, horses with experimentally induced OA treated with allogeneic adipose-derived MSCs selected for the marker integrin α10-MSCs, and from healthy control joints. miRNA expression in cartilage and synovial membrane was established by quantifying 70 pre-determined miRNAs by qPCR. Differential expression of the miRNAs was evaluated by comparing untreated OA and control, untreated OA and MSC-treated OA, and joints with high and low pathology score. A total of 60 miRNAs were successfully quantified in the cartilage samples and 55 miRNAs were quantified in the synovial membrane samples. In cartilage, miR-146a, miR-150 and miR-409 had significantly higher expression in untreated OA joints than in control joints. Expression of miR-125a-3p, miR-150, miR-200c, and miR-499-5p was significantly reduced in cartilage from MSC-treated OA joints compared to the untreated OA joints. Expression of miR-139-5p, miR-150, miR-182-5p, miR-200a, miR-378, miR-409-3p, and miR-7177b in articular cartilage reflected pathology score. Several of these miRNAs are known from research in human patients with OA and from murine OA models. Our study shows that these miRNAs are also differentially expressed in experimental equine OA, and that expression depends on OA severity. Moreover, MSC treatment, which resulted in less severe OA, also affected miRNA expression in cartilage.

14.
Methods Mol Biol ; 2598: 21-27, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36355282

RESUMEN

In native healthy hyaline cartilage, the chondrocytes are surrounded by a pericellular matrix that has a distinct composition and function compared to the hyaline cartilage extracellular matrix. The chondrocyte together with its pericellular matrix is called a chondron. The type VI collagen, which is the main component of the pericellular matrix, is resistant to enzymatic digestion by pure collagenase and dispase that do digest the extracellular matrix. Therefore, this combination of enzymes can be used to enzymatically isolate chondrons from hyaline cartilage. Chondrons have a high potential for cartilage tissue engineering. This chapter describes in detail how chondrons can be isolated from hyaline cartilage for further use.


Asunto(s)
Cartílago Articular , Cartílago Hialino , Condrocitos , Matriz Extracelular , Ingeniería de Tejidos , Colágeno Tipo VI
15.
Cartilage ; : 19476035231209402, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990503

RESUMEN

OBJECTIVE: Integrin α10ß1-selected mesenchymal stem cells (integrin α10-MSCs) have previously shown potential in treating cartilage damage and osteoarthritis (OA) in vitro and in animal models in vivo. The aim of this study was to further investigate disease-modifying effects of integrin α10-MSCs. DESIGN: OA was surgically induced in 17 horses. Eighteen days after surgery, horses received 2 × 107 integrin α10-MSCs intra-articularly or were left untreated. Lameness and response to carpal flexion was assessed weekly along with synovial fluid (SF) analysis. On day 52 after treatment, horses were euthanized, and carpi were evaluated by computed tomography (CT), MRI, histology, and for macroscopic pathology and integrin α10-MSCs were traced in the joint tissues. RESULTS: Lameness and response to carpal flexion significantly improved over time following integrin α10-MSC treatment. Treated horses had milder macroscopic cartilage pathology and lower cartilage histology scores than the untreated group. Prostaglandin E2 and interleukin-10 increased in the SF after integrin α10-MSC injection. Integrin α10-MSCs were found in SF from treated horses up to day 17 after treatment, and in the articular cartilage and subchondral bone from 5 of 8 treated horses after euthanasia at 52 days after treatment. The integrin α10-MSC injection did not cause joint flare. CONCLUSION: This study demonstrates that intra-articular (IA) injection of integrin α10-MSCs appears to be safe, alleviate pathological changes in the joint, and improve joint function in an equine post-traumatic osteoarthritis (PTOA) model. The results suggest that integrin α10-MSCs hold promise as a disease-modifying osteoarthritis drug (DMOAD).

16.
Tissue Eng Part C Methods ; 29(1): 30-40, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36576016

RESUMEN

In native articular cartilage, chondrocytes (Chy) are completely capsulated by a pericellular matrix (PCM), together called the chondron (Chn). Due to its unique properties (w.r.t. territorial matrix) and importance in mechanotransduction, the PCM and Chn may be important in regenerative strategies. The current gold standard for the isolation of Chns from cartilage dates from 1997. Although previous research already showed the low cell yield and the heterogeneity of the isolated populations, their compositions and properties have never been thoroughly characterized. This study aimed to compare enzymatic isolation methods for Chy and Chns and characterizes the isolation efficiency and quality of the PCM. Bovine articular cartilage was digested according to the 5-h (5H) gold standard Chn isolation method (0.3% dispase +0.2% collagenase II), an overnight (ON) Chn isolation (0.15% dispase +0.1% collagenase II), and an ON Chy isolation (0.15% collagenase II +0.01% hyaluronidase). Type VI collagen staining, fluorescence-activated cell sorting (FACS) analysis, specific cell sorting, and immunohistochemistry were performed using a type VI collagen staining, to study their isolation efficiency and quality of the PCM. These analyses showed a heterogeneous mixture of Chy and Chns for all three methods. Although the 5H Chn isolation resulted in the highest percentage of Chns, the cell yield was significantly lower compared to the other isolation methods. FACS, based on the type VI collagen staining, successfully sorted the three identified cell populations. To maximize Chn yield and homogeneity, the ON Chn enzymatic digestion method should be combined with type VI collagen staining and specific cell sorting. Impact statement Since chondrocytes are highly dependent on their microenvironment for maintaining phenotypic stability, it is hypothesized that using chondrons results in superior outcomes in cartilage tissue engineering. This study reveals the constitution of cell populations obtained after enzymatic digestion of articular cartilage tissue and presents an alternative method to obtain a homogeneous population of chondrons. These data can improve the impact of studies investigating the effect of the pericellular matrix on neocartilage formation.


Asunto(s)
Cartílago Articular , Colágeno Tipo VI , Animales , Bovinos , Colágeno Tipo VI/análisis , Colágeno Tipo VI/metabolismo , Matriz Extracelular/metabolismo , Condrocitos/metabolismo , Mecanotransducción Celular , Cartílago Articular/fisiología
17.
Orthop J Sports Med ; 11(7): 23259671231184848, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37529531

RESUMEN

Background: Autologous conditioned plasma (ACP) is a commercially available platelet concentrate with promising results from clinical trials. Purpose: To evaluate the clinical outcome after 3 consecutive injections of ACP in patients with knee osteoarthritis (OA) and study the influence of ACP composition and different patient factors as predictors of treatment effect. Study Design: Case series; Level of evidence, 4. Methods: This prospective case series included 260 patients (307 knees) who received ACP treatment for knee OA. The mean patient age was 51 ± 10 years. Improvement up to 12 months' follow-up was measured using the Knee injury and Osteoarthritis Outcome Score (KOOS). ACP composition was analyzed in 100 patients. The predictive value of age, sex, history of knee trauma, Kellgren-Lawrence OA grade, body mass index, and ACP composition was evaluated using generalized estimating equations. Results: The mean overall KOOS improved from 38 ± 14 at baseline to 45 ± 18 at 3 months, 45 ± 18 at 6 months, and 43 ± 18 at 12 months (all P < .05); 40% of patients achieved an improvement above the minimal clinically important difference (MCID) of 8 after 6 months and 33% after 12 months. The variation in ACP composition did not correlate with KOOS (P > .05). Older age led to a greater clinical benefit (ß = 0.27; P = .05), whereas bilateral treatment predicted worse outcomes (ß = -5.6; P < .05). Conclusion: The improvement in KOOS after treatment with ACP did not reach the MCID in most study patients. Older age was a predictor for better outcomes. The composition of ACP varied between patients but did not predict outcomes within the evaluated range. The study findings show the limited benefit of ACP treatment for knee OA and call for caution with routine use in clinical practice.

18.
J Mater Sci Mater Med ; 23(3): 813-21, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22218929

RESUMEN

Invasion of cells from surrounding tissues is a crucial step for regeneration when using a-cellular scaffolds as a replacement of the nucleus pulposus (NP). The aim of current study was to assess whether NP and surrounding annulus fibrosus (AF) cells are capable of migrating into dense collagen scaffolds. We seeded freshly harvested caprine NP and AF cells onto scaffolds consisting of 1.5 and 3.0% type I collagen matrices, prepared by plastic compression, to assess cell invasion. The migration distance appeared both time and density dependent and was higher for NP (25%) compared to AF (10%) cells after 4 weeks. Migration distance was not enhanced by Hst-2, a peptide derived from saliva known to enhance fibroblast migration, and this was confirmed in a scratch assay. In conclusion, we revealed invasion of cells into dense collagen scaffolds and therewith encouraging first steps towards the use of a-cellular scaffolds for NP replacement.


Asunto(s)
Colágeno/metabolismo , Disco Intervertebral/citología , Humanos , Disco Intervertebral/metabolismo , Microscopía Electrónica de Transmisión
19.
Bioengineering (Basel) ; 9(8)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35892757

RESUMEN

Enzymatically isolated stromal vascular fraction (SVF) has already shown to be effective as a treatment for osteoarthritis (OA). Yet, the use of enzymes for clinical purpose is highly regulated in many countries. Mechanical preparation of SVF results in a tissue-like SVF (tSVF) containing intact cell−cell connections including extracellular matrix (ECM) and is therefore less regulated. The purpose of this study was to investigate the immunomodulatory and pro-regenerative effect of tSVF on TNFα-stimulated chondrocytes in vitro. tSVF was mechanically derived using the Fractionation of Adipose Tissue (FAT) procedure. Characterization of tSVF was performed, e.g., cellular composition based on CD marker expression, colony forming unit and differentiation capacity after enzymatic dissociation (from heron referred to as tSVF-derived cells). Different co-cultures of tSVF-derived cells and TNFα-stimulated chondrocytes were analysed based on the production of sulphated glycosaminoglycans and the anti-inflammatory response of chondrocytes. Characterization of tSVF-derived cells mainly contained ASCs, endothelial cells, leukocytes and supra-adventitial cells. tSVF-derived cells were able to form colonies and differentiate into multiple cell lineages. Co-cultures with chondrocytes resulted in a shift of the ratio between tSVF cells: chondrocytes, in favor of chondrocytes alone (p < 0.05), and IL-1ß and COX2 gene expression was upregulated in TNFα-treated chondrocytes. After treatment with (a conditioned medium of) tSVF-derived cells, IL-1ß and COX2 gene expression was significantly reduced (p < 0.01). These results suggest mechanically derived tSVF stimulates chondrocyte proliferation while preserving the function of chondrocytes. Moreover, tSVF suppresses TNFα-stimulated chondrocyte inflammation in vitro. This pro-regenerative and anti-inflammatory effect shows the potential of tSVF as a treatment for osteoarthritis.

20.
NPJ Regen Med ; 7(1): 2, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013329

RESUMEN

Over the past two decades, evidence has emerged for the existence of a distinct population of endogenous progenitor cells in adult articular cartilage, predominantly referred to as articular cartilage-derived progenitor cells (ACPCs). This progenitor population can be isolated from articular cartilage of a broad range of species, including human, equine, and bovine cartilage. In vitro, ACPCs possess mesenchymal stromal cell (MSC)-like characteristics, such as colony forming potential, extensive proliferation, and multilineage potential. Contrary to bone marrow-derived MSCs, ACPCs exhibit no signs of hypertrophic differentiation and therefore hold potential for cartilage repair. As no unique cell marker or marker set has been established to specifically identify ACPCs, isolation and characterization protocols vary greatly. This systematic review summarizes the state-of-the-art research on this promising cell type for use in cartilage repair therapies. It provides an overview of the available literature on endogenous progenitor cells in adult articular cartilage and specifically compares identification of these cell populations in healthy and osteoarthritic (OA) cartilage, isolation procedures, in vitro characterization, and advantages over other cell types used for cartilage repair. The methods for the systematic review were prospectively registered in PROSPERO (CRD42020184775).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA